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Abstract: Traits that define the suitability of a crop for production and consumption are often assessed and predicted to 
identify superior genotypes for commercial deployment. This study assessed genetic parameter estimates and prediction 
for 25 agronomic and quality traits in 49 white yam clones. It employed best linear unbiased prediction (BLUP) in a mixed 
model analysis using genomic relationship matrix derived from 6337 Diversity Array Technology (DArT) molecular 
markers, multivariate technique of the principal component and canonical discriminant analysis with BLUP predicted 
values to select key traits for yam breeding. Findings revealed that additive genetic, non-additive genetic and non-
genetic factors contributed substantially to phenotypic variation of the studied yam traits. The non-genetic effects 
accounted for higher variation than the total genetic effects for majority of the traits except yam mosaic virus (YMV), 
tuber number per plant, ash content, flour yield, peel loss, and protein content. The narrow sense heritability was 
generally low (<0.30) for all traits except yam anthracnose (0.31), ash content (0.30) and peel loss (0.89). Trait selection 
with multivariate analysis identified 15 from the 25 traits with fresh tuber yield, tuber dry matter content (DMC), YMV, 
root-knot and Scutellonema bradys nematode susceptibility as the most important traits for white yam variety testing. 
This paper presents the importance of complementing BLUP prediction that accounts for the relationship among the 
genotypes with multivariate analysis for genetic parameter estimation, prediction and selection in yam breeding trials to 
accelerate the genetic gains. 
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INTRODUCTION 

Yam exhibits diverse attributes and performances 
across production environments. These attributes and 
performances are often exploited for the genetic 
improvement of the crop targeting tangible benefits to 
the society in the production and consumption systems. 
The diverse attributes and performances are 
extensively screened and tested by breeding 
programmes prior to the release of the best genotypes 
for commercial deployment. Genetic and non-genetic 
factors affect the genotype’s performance in selection 
and evaluation experiments [1-4]. The genotype (G) 
and genotype by environment interaction (GEI) are the 
two sources of variation useful in genotype 
assessment. The GEI is the inconsistent genotypic 
responses in multi-environment trials leading to either 
change in the ranking of genotypes or changes in trait 
values of genotypes without changes in genotypic 
ranking [5]. High GEI variability diminishes the 
accuracy of yield estimates and correlation between 
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genotype and phenotype [6]. Moreover, environmental 
variability can cause differential responses of 
genotypes in breeding trials that make the selection of 
superior genotypes difficult.  

Several analytical techniques have been developed 
and utilized to assess the attributes and performances 
of genotypes across environments in plant breeding 
experiments [7]. These include univariate, bivariate and 
multivariate analysis methods. The different analytical 
techniques are used in the analysis of data from 
breeding trials depending on the number of variables 
considered, and the way the variables are measured, 
explained and how they contribute to the selection 
decision. Breeding programmes often consider and 
measure multiple variables and require analytical 
techniques that permit simultaneous analysis of large 
data sets for reduction of dimensionality and 
identification of important traits with sufficient 
discriminatory power for germplasm evaluation, 
characterization and management. Multivariate 
techniques such as principal component analysis 
(PCA) and canonical discriminant analysis (CDA) have 
been useful in distinguishing genotypes, grouping 
genotypes and identifying key traits accounting for 
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variations in plants [8]. The key traits identified by the 
PCA and CDA techniques save cost, time and energy 
by removing traits that provide redundant information 
and focusing on important traits with genetic values 
that guide effective selection decision of the preferred 
genotype [9]. These techniques also facilitate graphical 
display of hidden factors, thereby interfacing between 
samples and variables [10]. The fixed-effect linear-
bilinear models comprising the Sites Regression 
(SREG) [11] and the Additive Main effect and 
Multiplicative Interaction (AMMI) models [12] are useful 
for investigation of the genotypic responses in multi-
environments. In these models, plant breeders 
graphically visualize the environmental and genotypic 
response patterns using biplots [5]. Linear mixed 
models or linear-bilinear mixed models are also widely 
utilized analytical tools for the analysis of data in multi-
environment trials (METs) [13]. The fixed-effect linear 
models and bilinear models including factorial 
regression (FR) models and partial least squares (PLS) 
regression models, respectively, constitute the factor 
analytic (FA) form of the genetic variance-covariance 
for environments [5]. These models possess a number 
of merits such as accommodation of heterogeneity of 
block and error variance between environments and 
within-environment spatial correlation (error variance 
modelling); easy handling of incomplete data; more 
precise estimates of the breeding values of genotypes 
due to incorporation of coefficients of genetic 
relationship form pedigree or molecular marker 
information and consideration of genotypes as random 
effects in the factor analytic model for GEI [14].  

Models that incorporate relationship matrices are 
powerful to dissect the genetic architecture of complex 
traits and impact fully aid successful implementation of 
breeding strategies and design [15, 16]. Relationship 
matrices are utilized for estimation of expected fraction 
of genes identical by state (genomic relationship matrix 
G), actual fraction of DNA shared by descent (additive 
genetic relationship matrix A), or fraction of alleles 
shared for loci affecting trait(s) of interest (relationship 
matrix T) [17, 18]. These matrices are useful for 
management of genetic diversity [19], genomics 
selection and parentage testing [20]. Models that utilize 
genomic data for determination of genetic relationships 
more accurately predict genetic effects compared to 
those that utilize expected relationships from pedigrees 
[18]. Breeding trial data analysis models incorporating 
relationship matrices have been effectively utilized in 
many crops to select subset of promising genotypes as 
parents in crosses generating new set of recombinants 

progenies or select superior genotypes for further 
testing in breeding stage to release as new variety. 
However, these have seldom been employed in 
analysis of yam breeding trials to facilitate selection of 
superior clones for commercial deployment or parents 
for crosses. 

Traditional multivariate techniques such as CDA, 
PCA, AMMI and GGE biplots have been used for 
determination of relationship between traits and 
genotypes [1, 2, 21-24]. However, assessment of the 
genetic effects, and selection of key traits accounting 
for the largest amount of variation possible in breeding 
trials are very critical in the development and 
deployment of new cultivars. Incorporation of 
relationship matrix and appropriate multivariate 
technique(s) in yam MET dataset would serve as useful 
guide for breeders in the early identification of parental 
genotypes with desired complimentary traits for 
crossing as well as superior clones with varietal 
potential for release decision. Such an assessment is 
imperative especially with the current alarming erratic 
climate change in the target production environments. 
The objectives of this study were to: (1) estimate 
genetic parameters in white yam breeding trials using 
molecular marker information; and (2) identify key plant 
traits with sufficient discriminatory power for germplasm 
evaluation in yam breeding. 

MATERIALS AND METHODS 
Plant Materials, Trial Sites and Design  

The yam clones comprised of three check varieties 
and 46 elite breeding lines from International Institute 
of Tropical Agriculture (IITA’s) yam breeding 
programme (Table 1). The trial sites represented three 
agro-ecological zones for yam in Nigeria: forest, forest-
savannah transition, and the southern Guinea 
savannah. The detailed descriptions of agro-ecological 
characteristics of the trial sites are presented in  
Table 2. The trial at each site was laid out in a 7 × 7 
alpha lattice design with two replicates. Healthy tubers 
of each genotype were cut into setts of 200 g each, 
pre-treated in a mixture of 70 g Macozeb, 75 ml 
Chlorpyrifos and 10 l tap water for 5 min and dried for 
20 h under shade. The setts were planted in holes 
made on the crest of mounds at 1 m × 1 m spatial 
arrangement giving a population of 10,000 plants ha-1. 
The plants were raised under non-staked condition with 
no external added fertilizer. The trial plots were hand 
weeded to maintain the plots free of weeds throughout 
the crop cycle. 
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Table 1: Description of Genotypes Utilized for the Study  

Genotype Status  Pedigree 

TDr 11/00180 Improved TDr 97/00840 × TDr 99/02626 

TDr 10/00245 Improved TDr 95/18544 × TDr 95/01932 

TDr 11/01408 Improved TDr 96/00604 (OP) 

TDr 09/02079 Improved TDr 07/01553 (OP) 

TDr 10/00605 Improved TDr 95/18544 × TDr 95/01932 

TDr 09/00013 Improved TDr 97/00793 × TDr 95/01932 

TDr 09/00220 Improved TDr 97/00793 × TDr 95/01932 

TDr 10/00563 Improved TDr 95/18544 × TDr 95/01932 

TDr 09/00404 Improved TDr 07/01553 × TDr 95/01932 

TDr 09/00135 Improved TDr 97/00793 × TDr 95/01932 

TDr 11/01142 Improved TDr 95/19158 (OP) 

TDr 08/00983 Improved TDr 97/00917 × TDr 99/02626 

TDr 11/00055 Improved TDr 04-219 × TDr 00/00196 

TDr 10/00149 Improved TDr 95/18544 × TDr 95/01932 

TDr 10/00021 Improved TDr 95/18544 × TDr 95/01932 

TDr 11/00228 Improved TDr 97/00205 × TDr 99/02626 

TDr 11/01701 Improved AGBANWOBE (OP) 

TDr 10/00913 Improved TDr 95/18544 × TDr 95/01932 

TDr 09/00052 Improved TDr 97/00793 × TDr 95/01932 

TDr 09/00263 Improved TDr 97/00793 × TDr 95/01932 

TDr 10/00248 Improved TDr 95/18544 × TDr 95/01932 

TDr 09/00134 Improved TDr 97/00793 × TDr 95/01932 

TDr 09/00341 Improved TDr 97/00793 × TDr 95/01932 

TDr 10/00412 Improved TDr 95/18544 × TDr 95/01932 

TDr 11/00734 Improved TDr 06-3 × TDr 1892 

TDr 10/00144 Improved TDr 95/18544 × TDr 95/01932 

TDr 11/00015 Improved TDr 04-219 × TDr 00/00196 

TDr 10/00310 Improved TDr 95/18544 × TDr 95/01932 

TDr 10/00060 Improved TDr 95/18544 × TDr 95/01932 

TDr 11/00629 Improved TDr 95/18544 × POUNA 

TDr 11/00008 Improved TDr 04-219 × TDr 00/00196 

TDr 09/00295 Improved TDr 97/00793 × TDr 95/01932 

TDr 09/00122 Improved TDr 97/00793 × TDr 95/01932 

TDr 09/00001 Improved TDr 97/00793 × TDr 95/01932 

TDr 11/01272 Improved TDr 96/00604 (OP) 

TDr 11/00128 Improved TDr 97/00840 × TDr 99/02626 

TDr 10/00600 Improved TDr 95/18544 × TDr 95/01932 

TDr 10/00228 Improved TDr 95/18544 × TDr 95/01932 

TDr 09/00152 Improved TDr 97/00793 × TDr 95/01932 

TDr 09/00408 Improved TDr 07/01553 × TDr 95/01932 

TDr 09/00267 Improved TDr 97/00793 × TDr 95/01932 

TDr 10/01012 Improved TDr 95/18544 × TDr 95/01932 

TDr 10/00052 Improved TDr 95/18544 × TDr 95/01932 

TDr 10/00282 Improved TDr 95/18544 × TDr 95/01932 



Analysis of Agronomic and Quality Traits from Multi-Location white Yam Global Journal of Botanical Science,  2022   Vol. 10     11 

TDr 11/00291 Improved TDr 97/00205 × TDr 99/02626 

TDr 09/00121 Improved TDr 97/00793 × TDr 95/01932 

TDr 89/02665 Released Unknown 

Danacha Landrace Unknown 

Ojuiyawo Landrace Unknown 

 
Table 2: Agro-ecological Characteristics of the Trial Sites  

 Location 

Attribute Ibadan  Abuja  Ubiaja Ikenne  

Coordinates      

Longitude  07º29.294''N 09º09.842''N 06º39.975''N 06º52.480''N 

Latitude  003º53.129''E 007º20.708''E 006º20.638''E 003º46.120''E 

Elevation (m) 227 459 330 71 

Agro-ecological zone Forest savannah transition Southern Guinea savannah Rainforest Rainforest 

Weather and climate attributes      

Rainfall (mm) 1410.5 1267.98 1741.17 1583.63 

Temperature (min-max) (ºC) 22.8–30.7 20.7–29.9 22.5–29.1 23.9–28.7 

Relative humidity (min-max) (%) 54.3–91.8 74.0 86.0 88.1 

Soil attributes      

pH(H2O) (1:1) 6.30 3.65 5.49 4.72 

OC (%) 0.51 0.19 0.52 0.79 

N (%) 0.005 0.018 0.004 0.008 

Bray P (ppm) 36.19 3.80 2.91 27.92 

K (Cmol/kg) 0.605 0.141 0.111 0.485 

Source: Geograpical Information System (GIS) and Analytical Services laboratories, IITA, Ibadan station, Nigeria. 

Phenotypic Data 

The phenotypic data included 25 traits assessed on 
49 white yam clones that were evaluated at four sites in 
Nigeria (Ibadan, Abuja, Ubiaja and Ikenne) in 
2017/2018 cropping season. The 25 traits comprised of 
agro-morphological and food quality traits measured 
using agreed yam ontology 
(http://www.cropontology.org/ontology/CO_343/Yam) 
and the standard operating protocol for yam variety 
performance evaluation trial [25] (Table 3). The leaf 
chlorophyll content (SCMR) was recorded using SPAD 
chlorophyll meter reader (SPAD-502, Konica Minolta, 
Osaka, Japan) as described by Markwell et al. [26]. 
The data were collected with an Android Galaxy Tab A 
2016 using the field book app [27]. Protocols for traits 
that required more clarifications are explained as 
follow. 

The disease severity score values for yam 
anthracnose disease (YAD) and yam mosaic virus 
(YMV) were converted to percentages and then used to 
estimate the area under disease progress curves 
(AUDPC) as described by Forbes et al. [28]: 

 

where   yi = disease severity at the ith observation, ti = 
time (days) at the ith observation, and n = total number 
of observations. The susceptibility scale values of YAD 
and YMV were estimated by first calculating the 
resistance scale values as described by Forbes et al. 
[28]: 

SX = Sy
DX

Dy  
where Sy = the assigned susceptibility 

scale value, Dy = observed disease score (AUDPC or 
rAUDPC) for the standard genotype, SX = estimated 
susceptibility scale value, DX = observed disease score 
for the studied genotype and rAUDPC = relative 
AUDPC. The quotient of the assigned susceptibility 
value and the resistance measure of the check variety 
(AUDPC or rAUDPC) was used to obtain a constant. 
The resistance value of each genotype was then 
multiplied by the constant to obtain the susceptibility 
value of that genotype. The peel loss (%) was 
estimated using the formula: 
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Peel loss (%) = 
WFP

WUFTBR
!100  where WFP is the 

weight of fresh peel and WUFTBR is the weight of 
unpeeled fresh tuber. 

The dry matter content (%) was determined using 
the forced-air oven dry method [29] where the sampled 
tubers were washed, sliced, shredded and thoroughly 
mixed. A sub-sample of 100 g the shredded pieces was 

Table 3: Detailed Description of Yam Traits Measured in the Study 

SN Trait Descriptor Trait Acronym Score Code – Descriptor State Sample/Time Collected 

Vegetative / establishment traits 

1 Days to first emergence DAYFE direct measurement (no. of days from planting to first 
emergence) derived from recorded dates 

2 Days to 50% sprout 
emergence DAYSE direct measurement (no. of days from planting to 50% 

emergence) derived from recorded dates 

3 Establishment rate STRATE direct measurement (proportion of emergence plants 
over total number planted) plot basis @ 2 MAP 

4 Leaf chlorophyll content 
(nmol/cm)* SCMR direct measurement (measured on 3 fully opened 

leaves) on 5 plants @ 3MAP 

5 Stem number per plant STNP direct measurement: done by counting on 8 plants @ 4 MAP 

6 Stem diameter per plant 
(cm) STDP direct measurement: done using vernier caliper on 5 plants @ 5 MAP 

7 Plant vigour PLNV 1=low, 2=medium, 3=high on 5 plants @ 5 MAP 

Disease traits 

8 Yam mosaic virus severity 
score YMV 1=no visible symptom of disease; 2=mild; 3=low; 

4=intermediate; 5=high 
on 8 plants @ 2, 3, 4, 5 

and 6 MAP 

9 Yam anthracnose severity 
score YAD 1=no visible symptom of disease; 2=mild; 3=low; 

4=intermediate; 5=high 
on 8 plants @ 2, 3, 4, 5 

and 6 MAP 

10 Root knot nematode 
severity RKN 1=no visible symptom of disease; 2=mild; 3=low; 

4=intermediate; 5=high at harvest (8 MAP) 

11 Scutellonema bradys 
nematode severity SBN 1=no visible symptom of disease; 2=mild; 3=low; 

4=intermediate; 5=high at harvest (8 MAP) 

Tuber and quality traits 

12 Tuber number per plant TTNPL direct measurement: done by counting at harvest (8 MAP) 

13 Total fresh tuber yield (t.ha-

1) TBRYLD direct measurement at harvest (8 MAP) 

14 Tuber dry matter content 
(%) DMC direct measurement  

15 Peel loss (%) PLOSS direct measurement  

16 Starch content (%) SYLD direct measurement  

17 Pasting temperature PTEMP direct measurement  

18 Peak viscosity PV direct measurement  

19 Time to peak viscosity PTIME direct measurement  

20 Holding strength/setback 
viscosity HS direct measurement  

21 Breaking down viscosity 
value BV direct measurement  

22 Final paste viscosity FPV direct measurement  

23 Flour yield (%) FYLD direct measurement (derived estimate)  

24 Ash content (%) ASHC direct measurement (derived estimate)  

25 Protein content (%) PROTEINC direct measurement (derived estimate)  

*The leaf chlorophyll content (SCMR) was recorded using Soil Plant Analytical Development (SPAD) chlorophyll meter reader (SPAD-502, Konica Minolta, Osaka, 
Japan) as described by Markwell et al. [26]. 
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oven dried at 105 °C for 24 h and the tuber dry matter 
was then determined as the percentage of dry wet over 
wet weight. The extraction and drying of starch were 
done using a modified protocol of Asaoka et al. [30]. 
Tuber samples of each genotype were randomly 
selected, weighed, and washed. The sampled tubers 
were peeled, shredded and mixed in a container. About 
100 g of each grated and mixed sample was put in a 
bottle, followed by addition of 200 ml of distilled water 
and ground for 5 min using the LabMill. After blending, 
3 l of water was added prior to sieving using 125 µm 
mesh or 90 mm test sieve (Yokyo SANPO).  

The mixture was left for 2 h to permit settling of 
starch particles and decantation of supernatant. The 
starch particles were put in dishes of known masses 
and dried to constant mass in an oven at 60 °C. The 
starch yield (%) was determined using the method of 
Krochmal & Kilbride [31]: 

Starch yield (%) = 
WDS
WFTBR

!100 = W3 "W1

W2 "W1

!100  

where WDS is the weight of dried starch content, 
WFTBR is the weight of fresh tuber, W1 = mass of 
evaporating dish; W2 = mass of evaporating dish + mass 
of starch before drying; and W3 = mass of evaporating 
dish + mass of starch after drying.  

The pasting profile of starch was determined using 
a Rapid Visco-Analyser (RVA) connected to a 
computer with thermocline for windows version 1.1 
software [32, 33]. Data collected on starch pasting 
attributes included: pasting temperature (temperature 
at which irreversible swelling of the starch granules 
occurs); peak viscosity (highest viscosity during the 95 
°C heating period); holding strength/hot paste stability 
viscosity (lowest viscosity at the end of the 95 °C 
heating period); breakdown value (change in viscosity 
from peak to holding strength); final or cold paste 
viscosity (highest viscosity at end of the 50 °C cooling 
period) and peak time (time taken to reach peak 
viscosity). The flour yield or content (%) was 
determined using similar method as the starch [30]: 

Flour yield (%) = WDS
WFTBR

!100
 
where WDF is the 

weight of dried flour content and WFTBR is the weight 
of fresh tuber.  

The ash content was determined using the protocol 
described by AOAC [34]. About 2 g dried sample of 
each genotype was weighed into a clean porcelain 
crucible. The crucible was put in a muffle furnace set at 
600 °C and left for 6 h. The crucibles containing 
charred samples were transferred to a desecrator, 
cooled and reweighed.  

The percent ash was estimated as: % ash = 
W3 !W1

W2 !W1

"100  where W1 = mass of empty crucible; W2 = 

mass of crucible + yam sample; and W3 = mass of 
crucible + ash. 

Protein content was determined using the micro- 
Kjeldahl method (N × 6.25) [35]. 

Molecular Data 

Young fresh leaves were collected from field grown 
three plants per clone using dried ice and lyophilized 
before DNA extraction. Genomic DNA was extracted 
using modified CTAB protocol with slight modification 
[36]. DNA quality and concentration were accessed 
using both agarose gel and nanodrop following Aljanabi 
& Martinez [37]. Concentrated DNA of 50 µL from each 
sample was sent to Diversity Array Technology (DArT) 
Pty Ltd, Canberra, Australia for sequencing. Raw 
HapMap file received was converted to a Variant call 
format (VCF) for the analysis using PERL programming 
language and Tassel v.5.2.43 [38, 39]. The VCF file 
was filtered for missing value and polymorphic SNPs 
with quality parameter and a call rate > 80%, depth 
>95%, and minor allele frequency > 5%. After filtering, 
6337 polymorphic SNP markers were retained and 
used to construct genomic relationship matrix in the R 
[40] package rrBLUP [41]. The missing data for 
markers were imputed using beagle 4 [42]. The SNP 
distribution and density along the different 
chromosomes was accessed using CMplot R package 
[43]. The VCF file with the final SNPs markers number 
was converted to the additive format in 0, 1, 2 where 
zero stands for genotype with no minor allele, 1 for 
heterozygote and 2 for homozygote minor allele count 
at each locus using recodeA function implemented in 
plink [44]. The deviation of 1 from gene content or MAF 
matrix were obtained to generate score of -1, 0, 1 to be 
used in rrBLUP to construct the genomic relationship 
G-matrix. 

Data Analyses 

Different analysis pipelines were employed to 
dissect the genetic and non-genetic factors influencing 
the performance of yam clones in multi-location trial 
dataset. The data collected were first subjected to a 
linear mixed model by residual maximum likelihood 
(REML) procedure [45] to estimate the variance 
parameters and the empirical Best Linear Unbiased 
Predictions (EBLUPs) for random effects using 
ASReml-R 4 [46]. 
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The linear mixed model used was 

y = Xβ + Zuu + Zgua + Zguã + ! where y is the data 
vector of the response variable across p locations with 
Nj plots per location j. Each location was treated as 
separate trial so that p=4; !  is the vector of fixed 
effects associated with the corresponding design matrix 
(X), including the location main and location specific 
design-based replication effects. The term u is a vector 
of random effects associated with location specific field 
blocking structures (block within replication) used to 
capture extraneous variation with the corresponding 
design matrix Zu; ua and uã are the vectors of random 
additive and non-additive (residual) genetic within 
location effects, respectively, with corresponding 
design matrix Zg. The genotype (clone) as associated 
with G-matrix and individual identity was fitted to obtain 
unbiased estimates of genetic variance. Accordingly, 
the genetic variance was partitioned to the additive 
effect which was associated with a covariance structure 
proportional to genetic relationships derived from the 
molecular markers and the non-additive genetic effect 
which explained by individual identity rather than the 
genomic relationship matrix following the approach of 
Borgognone et al. [47] and Ovenden et al. [48]. ! is the 
vector of errors or residuals modelled random within 
each trial.  

From the variance component analysis, different 
genetic parameters such as additive genetic variance, 
non-additive genetic variance, non-genetic variance 
associated with among plots and within plot effect, 
proportion of total genetic variances that are additive, 
trait heritability ((both narrow sense (h2)   and broad 
sense (H2)), genotypic coefficients of variation (GCV), 
phenotypic coefficient of variation (PCV), expected 
genetic advance (GA), and genetic advance based on 
mean (GAM) from attempting superior clone selection 
were determined. The GCV and PCV were determined 
following the formula described in Burton & Devane 
[49]. The GCV and PCV values were categorized using 
the technique proposed by Deshmukh et al. [50] as 
follows: values <10% = low, values that are 10 – 20% = 
medium and values >20% = high. 

Narrow (h2)  and broad (H2) sense heritability values 
were determined using a formula by Robinson et al. 
[51]. The h2 and H2 values were considered as low for 
values that range from 0 – 30%, moderate for values 
that range from 30 – 60% and high for those >60% as 
per Robinson et al. [51]. The expected genetic advance 
(GA) and the expected genetic advance as percent of 
population mean (GAM) were estimated for comparison 

of the extent of predicted genetic gain for traits 
considered for selection of superior clones based on 
the equation by Shukla et al. [52]. The GAM values 
were classified as low for values <10%, moderate for 
values ranging from 10-20% and high for values >20% 
as described by Shukla et al. [52]. 

The BLUP prediction of genotypic values for the 
clones extracted for each trait in linear mixed model 
with genomic relationship matrix were subjected to the 
multivariate analysis that combined the principal 
component (PCA) and canonical discriminant analysis 
(CDA) using the procedure PRINCOMP and CANDISC 
in SAS version 9.5 [53]. The PCA analysis was used to 
remove highly correlated traits that provide redundant 
information in the MET dataset while CDA was applied 
to the retained traits with PCA analysis for assessing 
the EBLUP differences among yam clones and identify 
key traits that best discriminate the yam clones 
effectively in the dataset. The PCA was performed on 
correlation matrix option as units of measurement of 
the individual traits in the dataset differ [54]. The 
principal components that exhibited eigenvalue > 1.0 
according to the Kaiser criterion [55] were retained as 
sufficient to explain the largest amount of variation 
possible in dataset. The signgificance of trait 
contribution to the variation accounted by the retained 
principal component was based on the absolute 
eigenvector arbitrary cutoff value of 0.35 [56]. 
Canonical discriminant analysis was applied to small 
number of orthogonal traits extracted by PCA that 
accounted for the largest amount of variation possible 
among the 25 traits describing the 49 yam clones in 
METs. 

RESULTS 
Quantitative Genetic Parameter Estimates for 
Measured Traits 

The genotypes exhibited wide ranges of variability 
within most of the measured traits (Table 4). Traits with 
wide range of variability included: days to first 
emergence (14.9–24.6 days), days to 50% emergence 
(26.7–38.1 days), establishment rate (78.8–98.8%), 
leaf chlorophyll content (40.8–50.5 SPAD value), total 
tuber yield (6.1–15.6 t ha-1), starch pasting property 
traits [breakdown value (70.50–717.75 cP), final peak 
viscosity (2055.50–3415.50 cP), holding strength 
(113.22–533.75 cP), peak viscosity (1545.00–2600.75 
cP)], ash content (0.71–4.81%), peel loss (8.69–
33.63%), protein content (2.88–7.01%), and starch 
yield (15.82–26.91%). 
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The genetic and non-genetic effects were 
substantial in contributing to the variation in trait 
performances in the current set of materials but to 
varied degrees (Table 4). The non-genetic 
(environmental) effects contributed to higher variation 
in the dataset than the genetic effect for the majority of 
the traits except yam mosaic virus severity score, tuber 
number per plant, ash content, flour yield, peel loss, 
and protein content. The percentage of total genetic 
variance that are additive and non-additive (dominant, 
epistatic) varied among the measured traits. The 
additive genetic variance accounted for the highest 
proportion of total genetic variance in the dataset for 
traits such as stem diameter, plant vigour, yam 
anthracnose disease susceptibility scale, peel loss and 
the starch peak and setback viscosities. In contrast, 
majority of the measured traits such as days to first 

sprout emergence, days to 50% sprout emergence, 
stem number per plant, plant establishment rate, leaf 
chlorophyll content, tuber dry matter, yam mosaic virus 
susceptibility scale, tuber number per plant, fresh tuber 
yield, starch RVA attributes such as breakdown, 
pasting tempeture, time to peak viscosity and peak 
viscosities, and quality attributes such as ash content, 
flour and starch yield had the highest proportion of non-
additive genetic variance. The additive genetic variance 
was nill or nigligible for leaf chlorophyll content, dry 
matter, root-knot nematode susceptibiltiy score, flour 
and starch yield. 

The narrow sense heritability was generally low 
(<0.30) for all traits except yam anthracnose 
susceptibility scale (0.31), ash content (0.30) and peel 
loss (0.89). The broad sense heritability estimates 

Table 4: Estimated Genetic and Non-genetic Parameters of Agronomic and Quality Traits of white Yam Clones from 
Multi-Location Trials 

Trait Mean±SE Range σ2
a σ2

rg σ2
ng 

Days to first sprout emergence 19.84±2.80 14.88-24.63 1.86 4.54 21.4 

Days to 50% sprout emergence 33.01±3.43 26.75-38.13 0.32 4.45 28.9 

Stem number per plant 6.07±0.41 4.1-7.08 0.28 0.13 0.55 

Stem diameter per plant (cm) 1.98±0.37 1.17-3.25 0.06 0.14 0.32 

Establishment rate 91.51±5.45 78.75-98.75 21.11 33.93 96.3 

Leaf chlorophyll content (nmol/cm) 46.14±2.79 40.8-50.51 0 7.59 16.101 

Plant vigour 2.39±0.19 2.06-2.71 0.02 0.014 0.31 

Tuber dry matter content 31.96±1.47 27.61-35.96 0.05 4.22 7.61 

Root knot nematode severity 1.46±0.38 1.1-1.95 0.0001 0.03 0.15 

Scutellonema bradys nematode severity 1.45±0.21 1.1-2.08 0.025 0.025 0.086 

Yam mosaic virus severity score 2.86±0.19 2.16-3.64 0.03 0.09 0.09 

Yam anthracnose severity score 2.50±0.23 2.19-3.34 0.05 0.008 0.11 

Tuber number per plant 1.58±0.20 1.13-2.46 0.07 0.11 0.101 

Total fresh tuber yield (t ha-1) 10.33±1.96 6.14-15.61 1.73 3.53 8.52 

Breaking down viscosity value 380.35±77.84 70.5-717.75 1240.31 9529.6 67941.3 

Final paste viscosity 2527.10±150.65 2055.5-3415.5 43747.92 25652.1 80754.9 

Holding strength/setback viscosity 895.69±113.22 533.75-1405.5 20554.88 17651.3 44762.9 

Pasting temperature 81.40±0.56 79.77-83.37 0.058 0.33 1.13 

Pasting time 4.97±0.14 4.58-6.65 0.015 0.065 0.081 

Peak viscosity 2011.81±130.18 1545-2600.75 9312.091 21786.6 53391.8 

Ash content 2.88±0.24 0.71-4.81 0.182 0.339 0.089 

Flour yield 27.23±1.63 20.79-31.11 0 4.76 4.05 

Peel loss 18.74±1.37 8.69-33.63 24.32 1.76 1.11 

Protein content 4.70±0.24 2.88-7.01 0.24 0.51 0.082 

Starch content 22.11±2.62 15.82-26.91 0.058 4.39 5.275 

SE=Standard error, σ2
a=additive genetic variance, σ2

rg=residual genetic variance, σ2
ng= non-genetic variance. 
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ranged between 0.10 (plant vigour) and 0.65 (tuber 
number per plant) for agro-morphological traits, 
between 0.17 (root-knot nematode susceptibility score) 
and 0.58 (yam mosaic virus susceptibility scale) for 
biotic stress resistance traits, between 0.26 (pasting 
temperature) and 0.5 (time to peak viscosity) for starch 
pasting property attributes, and between 0.46 (starch 
yield) and 0.96 (peel loss) for food quality traits. Traits 
with high broad-sense heritability estimates (> 0.6) 
were tuber number per plant (0.65), ash content (0.85), 
protein content (0.90) and peel loss (0.96). Peel loss 
combined high narrow and broad sense hertibality 
estimates whilst days to first sprout emergence, days to 
50% sprout emergence, root-knot nematodes 
susceptibilty score, plant vigour, pasting temperature 
had both low narrow and broad sense heritability 
values (< 0.3). The narrow sense heritability was 
generally low (<0.30) for all traits except yam 

anthracnose susceptibility scale (0.31), ash content 
(0.30) and peel loss (0.89). The broad sense heritability 
estimates ranged between 0.10 (plant vigour) and 0.65 
(tuber number per plant) for agro-morphological traits, 
between 0.17 (root-knot nematode susceptibility score) 
and 0.58 (yam mosaic virus susceptibility scale) for 
biotic stress resistance traits, between 0.26 (pasting 
temperature) and 0.5 (time to peak viscosity) for starch 
pasting property attributes, and between 0.46 (starch 
yield) and 0.96 (peel loss) for food quality traits. Traits 
with high broad-sense heritability estimates (> 0.6) 
were tuber number per plant (0.65), ash content (0.85), 
protein content (0.90) and peel loss (0.96). 

Peel loss combined high narrow and broad sense 
hertibality estimates whilst days to first sprout 
emergence, days to 50% sprout emergence, root-knot 
nematodes susceptibilty score, plant vigour, pasting 

Table 4: Continued. 

Trait % σ2
a σ2

g/σ2
ng h2 H2 GCV PCV GA GAM  

Days to first sprout emergence 29 0.30 0.07 0.23 12.8 26.6 2.5 12.6 

Days to 50% sprout emergence 7 0.17 0.01 0.14 6.6 17.6 1.7 5.1 

Stem number per plant 68 0.75 0.29 0.43 10.5 16.1 0.9 14.3 

Stem diameter per plant (cm) 30 0.63 0.11 0.38 22.6 36.4 0.6 28.5 

Establishment rate 38 0.57 0.14 0.36 8.1 13.4 9.1 10.0 

Leaf chlorophyll content (nmol/cm) 0 0.47 0 0.32 6.0 10.5 3.2 7.0 

Plant vigour 59 0.11 0.05 0.10 7.7 24.5 0.1 5.1 

Tuber dry matter content 1 0.56 0.004 0.36 6.5 10.8 2.6 8.1 

Root knot nematode severity 0 0.20 0.001 0.17 11.9 29.1 0.1 10.2 

Scutellonema bradys nematode severity 50 0.58 0.18 0.37 15.4 25.4 0.3 19.4 

Yam mosaic virus severity score 25 1.33 0.15 0.58 12.1 16.0 0.5 17.5 

Yam anthracnose severity score 86 0.53 0.31 0.35 9.6 16.4 0.3 11.8 

Tuber number per plant 39 1.78 0.25 0.65 26.9 33.6 0.7 44.9 

Total fresh tuber yield (t ha-1) 33 0.62 0.13 0.38 22.2 35.9 2.9 28.1 

Breaking down viscosity value 12 0.16 0.05 0.39 27.28 73.76 225.40 67.30 

Final paste viscosity 63 0.86 0.29 0.46 10.42 15.33 367.19 24.88 

Holding strength/setback viscosity 54 0.85 0.25 0.46 21.82 32.16 272.95 47.41 

Pasting temperature 15 0.34 0.04 0.26 0.77 1.51 0.66 1.58 

Pasting time 19 0.99 0.09 0.50 5.69 8.07 0.41 13.87 

Peak viscosity 30 0.58 0.11 0.37 8.77 14.45 221.55 22.63 

Ash content 35 5.85 0.30 0.85 25.06 27.12 1.37 22.63 

Flour yield 0 1.18 0 0.54 8.01 10.90 3.30 22.63 

Peel loss 93 23.50 0.89 0.96 27.25 27.82 10.31 22.63 

Protein content 32 9.15 0.29 0.90 18.43 19.41 1.69 22.63 

Starch content 1 0.84 0.006 0.46 9.54 14.10 2.95 22.63 

%σ2
a=% of total genetic variance that is additive, σ2

g/σ2
ng= ratio of total genetic variance to non-generation variance, h2=narrow sense heritability H2=broad sense 

heritability, GCV=genotypic coefficient of variation, PCV=phenotypic coefficient of variation, GA=genetic advance, GAM=genetic advance based on mean. 
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temperature had both low narrow and broad sense 
heritability values (< 0.3). The remaining traits had low 
GCV values ranging between 6.5 and 9.6%. Traits that 
exhibited the high PCV values were starch breakdown 
viscosity (73.76%), stem number per plant (36.4%), 
fresh tuber yield (35.6%), tuber number per plant 
(33.6%), starch setback viscosity (32.16%), tuber dry 
matter content (29.1%), ash content (27.12%), peel 

loss (27.25%), days to first sprout emergence (26.6%), 
Scutellonema bradys susceptibility score (25.4%), and 
plant vigour (24.5%) whereas those with the lowest 
PCV were starch pasting temperature (1.51%) and time 
to peack viscosity (8.7%). 

Genetic advance as percent of the mean (GAM) 
ranged from 0.8–59.3% (Table 6, 4). High GAM values 

Table 5: Eigen Vectors, Eigen Values, Percent Variation and Accumulated Variation Accounted by the First Nine 
Principal Components  

Principal components  

Trait  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

ASHC 0.00 0.03 -0.25 -0.36 -0.02 0.30 -0.08 0.10 -0.12 

BV 0.29 0.29 0.05 0.00 -0.25 0.08 0.18 0.06 -0.15 

DAYFE -0.12 0.13 -0.36 0.14 0.21 0.00 -0.02 0.21 0.39 

DAYSE -0.02 0.19 -0.41 0.09 0.17 0.19 0.10 0.02 0.17 

DMC 0.29 0.12 0.01 0.18 0.05 0.19 -0.44 -0.01 -0.01 

FPV -0.06 -0.37 0.15 0.35 0.07 0.22 0.06 0.26 -0.04 

FYLD 0.21 0.15 0.03 0.32 0.33 -0.18 -0.17 -0.15 -0.23 

HS -0.26 -0.30 0.16 0.16 0.05 0.16 -0.13 0.26 -0.19 

SCMR 0.04 0.28 0.04 -0.04 -0.01 0.15 -0.28 0.07 0.48 

PLNV -0.16 0.27 0.31 0.12 -0.02 0.28 -0.08 -0.23 -0.16 

PLOSS -0.01 -0.11 0.17 -0.29 -0.30 0.24 -0.31 0.27 0.06 

PROTEINC 0.03 0.19 0.07 0.25 0.00 -0.25 0.26 0.36 0.05 

PTEMP -0.35 0.06 -0.03 -0.01 0.21 0.05 0.09 -0.04 -0.18 

PTIME -0.18 -0.38 -0.05 0.13 0.10 0.01 -0.05 -0.13 0.36 

PV 0.32 -0.05 0.07 0.31 -0.09 0.19 0.30 0.14 0.03 

RKN 0.18 0.02 0.09 -0.04 0.03 0.41 0.33 0.03 0.10 

SBN 0.15 -0.21 -0.10 0.25 -0.10 0.36 0.03 -0.33 0.13 

YAD 0.18 -0.15 -0.09 0.06 -0.33 -0.31 -0.09 0.34 0.04 

YMV 0.13 -0.21 -0.18 -0.15 -0.21 -0.06 0.25 -0.36 0.00 

STDP -0.23 0.26 0.07 0.14 -0.33 0.06 0.10 0.11 0.12 

STNP 0.21 -0.08 0.27 -0.31 0.33 -0.05 0.11 0.09 0.19 

STRATE 0.00 -0.04 0.28 0.12 -0.26 -0.25 -0.06 -0.33 0.38 

SYLD 0.31 -0.05 -0.01 0.09 0.09 -0.06 -0.35 -0.01 -0.06 

TBRNP 0.27 -0.12 0.22 -0.25 0.34 0.00 0.13 0.10 0.14 

TBRYLD -0.19 0.19 0.43 -0.03 0.13 0.01 0.09 -0.04 0.16 

Eigen value 4.09 3.14 2.75 2.13 1.75 1.52 1.31 1.20 1.08 

Variation (%) 16.36 12.58 11.00 8.50 6.98 6.09 5.22 4.79 4.33 

Accumulated 
variation (%) 16.36 28.94 39.94 48.44 55.42 61.51 66.73 71.52 75.85 

PC=Principal component; values in bolds represent traits that contributed most to variability in the various PCs; ASHC=ash content; BV=breaking value; 
DAYFE=days to first sprout emergence; DAYSE=days to 50% sprout emergence; DMC=tuber dry matter content; FPV=final paste viscosity; FYLD=flour yield; 
HS=holding strength; SCMR=leaf chlorophyll content; PLNV=plant vigour; PLOSS=protein content; PROTEINC=protein content; PTEMP=pasting temperature; 
PTIME=pasting time; PV=peak viscosity; RKN=root knot nematode; SBN=Scutellonema bradys nematode; YAD=yam anthracnose severity; YMV=yam mosaic virus; 
STDP=stem diameter per plant; STNP=stem number per plant; STRATE=establishment rate; SYLD=starch content; TBRNP=tuber number per plant; TBRYLD=total 
fresh tuber yield. 



18    Global Journal of Botanical Science,  2022   Vol. 10 Norman et al. 

were exhibited for stem number per plant (30.3%), 
Scutellonema bradys nematode (20.7%), tuber number 
per plant (44.3%), fresh tuber yield (28.1%), starch 
breakdown viscosity (59.3%), holding strength (30.5%), 
ash content (47.6%), peel loss (55.0%) and protein 
content (36.0%); whilst days to 50% sprout emergence 
(5.1%), establishment rate (9.9%), leaf chlorophyll 
content (6.9%), plant vigour (4.2%), tuber dry matter 
content (8.1%), root knot nematode (6.8%), pasting 
temperature (0.8%) and time to peak pasting 
temperature (8.2%) exhibited low GAM. 

Trait selection for breeding  

Principal component analysis efficiently reduced the 
possible redundancy of information with the traits that 
have some degree of correlation in the dataset. Nine 
explicative components, each exhibiting eigenvalue > 
1.0 explained about 76% of the total variation of the 25 
traits used to describe the 49 clones in METs (Table 5).  

Of the 25 traits recorded to describe the yam 
clones, 15 (emboldened black) were considered 
important traits that accounted for the largest amount of 
variation possible in dataset (Table 5). The 15 traits 
with the absulute eigenvector value > 0.35 that 
significantly captured most of the variation in the MET 
dataset were days to first emergence (DAYFE), days to 
50% sprout emergence (DAYSE), stand 
establishement rate (STRATE), leaf chlorophyll content 
(SCMR), root knot nematode susceptibility score 
(RKN), Scutellonema brady nematode susceptibility 

score (SBN), yam mosaic virus susceptibility scale 
(YMV), fresh tuber yield (TBRYLD), tuber dry matter 
content (DMC), starch pasting property attributes final 
peak viscosity (FPV), time to peak viscosity (PTIME) 
and pasting temperature (PTEMP), starch yield 
(SYLD), ash content (ASHC) and protein contenet 
(PROTEINC). Of the 15 important traits extracted with 
the PCA, ash content, protein content and starch yield 
were recorded at single location (at Ibadan) while the 
starch pasting property traits FPV, PTEMP, and PTIME 
were recorded at two locations (at Abuja and Ibadan). 
The remaining nine traits were recorded to describe the 
yam clones at all the four locations. 

Canonical discriminant analysis (CDA) of the nine 
traits assessed at all the test locations revealed that 
three canonical discrimiant variables with eigenvalues 
> 1.0 explained 70% of the total variation among the 
yam clones (Table 6). When cononical coefficients 
were collectively examined, traits with absulute 
eigenvalues > 0.5 contributed most to the variability 
noted in genotypes. Accordingly, five traits namely 
tuber dry matter content, yam mosaic virus 
susceptibility scale, fresh tuber yield, root knot 
nematode susceptibility score and Scutellonema brady 
nematode susceptibility score were most effective in 
distinguishing the genotypes (Table 6). Of the five most 
important distiguishing traits, fresh tuber yield, tuber dry 
matter and yam mosaic virus susceptibility scale 
exhibited the highest correlation coefficients with 
discriminant functions (Table 7). 

Table 6: Canonical Discriminant Analysis of Selected Growth, Yield and Disease Traits of Yam  

Variable CAN1 CAN2 CAN3 

Days to first sprout emergence -0.161 -0.310 -0.299 

Days to 50% sprout emergence 0.256 0.354 0.298 

Tuber dry matter content 0.514 -0.592 1.018 

Leaf chlorophyll content (nmol/cm) 0.263 0.149 0.528 

Root knot nematode severity -0.516 0.523 1.048 

Scutellonema bradys nematode severity 0.815 -1.290 -0.951 

Yam mosaic virus severity score 0.976 0.907 0.191 

Establishment rate -0.010 0.055 0.019 

Total fresh tuber yield (t ha-1) -0.707 -0.174 0.219 

Eigen value 1.91 1.23 1.01 

Variation (%) 32.09 20.70 17.08 

Accumulated variation (%) 32.09 52.79 69.87 

Canonical correlation 0.81 0.74 0.71 

CAN=canonical function. 



Analysis of Agronomic and Quality Traits from Multi-Location white Yam Global Journal of Botanical Science,  2022   Vol. 10     19 

DISCUSSION 

This study dissected the nature and magnitude of 
genetic and non-genetic factors explaining the variation 
in dataset from multilocation trials using phenotypic and 
molecular marker information. Findings showed the 
presence of useful variation in the current set of 
materials for growth, tuber yield and food quality traits 
that could be exploited through direct selection or 
population improvement scheme. The size of 
phenotypic variance that is due to the genetic and non-
genetic factors matters in determining the most likely 
means to exploit the heritable variation for the trait in a 
breeding population via selective or recombination 
breeding. The total genetic variance was low for large 
array of measured traits including fresh tuber yield in 
current dataset indicating that large proportions of the 
total variation was non-heritable or environmental. 
These findings are consistent with Egesi & Asiedu [24], 
who also found higher total genetic variance compared 
to the non-genetic variance for fresh tuber yield in yam. 
The high non-genetic effects on trait variations for the 
yam clones in the current dataset highlights the 
potential to improve these traits through use of a 
breeding method that utilizes high selection accuracy 
through manipulation of the growth environment or 
following population improvement that adds new 
variants into the existing or contributes to the genetic 
variance change in current genetic background. Traits 
such as yam mosaic virus susceptibility, tuber number 
per plant, ash content, flour yield, peel loss and protein 
content had large proportions of the phenotypic 
variation attributed to genetic factors and direct 
selection in short term would typically exploit the pre-

existing genetic variation in the current set of materials. 
The slightly higher PCV values compared to the GCV 
generally imply that some traits were less sensitive to 
environmental effects. This reflects the tolerance of 
some clones in the current set of materials to the 
environmental changes around its specific genotypic 
optimum for the traits hence selection efficiencies were 
relatively stable in different locations for these traits. 
Traits with high PCV and GCV signify high possibility of 
selecting clones possessing superior values for the trait 
in the next clonal generation. Moreover, traits that had 
high broad-sense heritability (H2 ≥0.6) captured higher 
residual genetic variance (the dominance and 
epistasis) effects than contribution by additive genetic 
effect to the total genetic effect except one trait (i.e. 
peel loss), which combined higher additive and residual 
genetic effects to the total genetic effect. The broad-
sense heritability is more important in a clonally 
reproducing crop’s selection programme than the 
sexual and outcrossing crops as clonal propagation 
captures all genetic effects: additive, dominance and 
epistasis and can pass the genotype intact unto the 
next generation. Traits that exhibited high heritability 
and a high genetic advance of mean indicate their 
effective improvement through selective breeding. The 
traits with high heritability and high genetic advance 
also imply that they are under the control of additive 
genes, whilst those with high heritability and low 
genetic advance are under the control of non-additive 
genes, which hinder their genetic improvement through 
direct selection in the outcrossing crop but not in clonal 
propagating crops like yam. These findings agree with 
the proposition that traits with high H2 and h2 estimates 
implied their potential usefulness for genetic 

Table 7: Correlations between Data Variates and Discriminant Functions  

 Discriminant Function 
SN 

Variable 1 2 3 

1 DAYFE -0.02 -0.05 -0.04 

2 DAYSE 0.06 0.02 0.04 

3 DMC 0.24 -0.38 0.56 

4 SCMR 0.00 -0.06 0.30 

5 RKN 0.00 -0.01 0.10 

6 SBN 0.27 -0.32 -0.20 

7 YMV 0.50 0.49 -0.10 

8 STRATE -0.03 -0.01 0.02 

9 TBRYLD -0.35 -0.04 0.07 

DAYFE=Days to first emergence, DAYSE=Days to 50% emergence, DM=dry matter content, SCMR=leaf chlorophyll content, RKN=root knot nematode, 
SBN=Scutellonema bradys (yam nematode), YMV=susceptibility scale value for yam mosaic virus, STRATE=establishment rate, TTBRYLD=total fresh tuber yield, 
SN=serial number. 
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improvement [57]. Johnson et al. [58] also noted the 
relevance of combining heritability with a genetic 
advance for efficient predictability of response to 
selection. 

The BLUP prediction of genotypic and breeding 
values of traits by incorporating genomic relationship 
matrix G in current dataset demonstrated as a useful 
guide for yam breeders for selection and identification 
of potential parents with desired complimentary traits 
for hybridization and superior clones with variety 
potential for commercial deployment than using the 
analytic model implementing the phenotypic data 
alone. These findings agree with [59] who noted that 
earlier parental identification for crossing as a major 
merit of genomic selection. Genomic selection based 
on genetic values from genomic relationship matrix has 
been suggested for incorporation into breeding 
programmes of various crops [38, 47, 60–64], including 
root and tubers [65]. In yam, breeding practices are 
challenged by long generation cycle from seed to seed 
requiring many cycles of phenotypic selection to 
identify superior genotypes for crosses and variety 
testing. Better knowledge on the genetic merits of the 
breeding materials enables crop breeders to 
circumvent many cycles of phenotype-based selection 
by discarding genotypes with low genetic merits at an 
early stage of the breeding programme, whilst retaining 
those with high genetic merits for further crossing and 
subsequent selection in breeding stage. The reduction 
of the cycle of breeding and field evaluations through 
BLUP prediction with relationship matrix saves 
resources and increases the pace of cultivar release.  

The multivariate techniques utilized in this study 
identified relevant traits in discriminating the yam 
clones in METs and worth for further dissection of 
performance stability across test locations. The 
principal component analysis identified linear 
combination of 15 traits from the 25 recorded traits that 
minimize within group variance and maximize between 
group variance for discriminating the yam clones 
effectively. Of the 15 traits identified relevant, nine were 
recorded at four locations and subjected to the 
canonical discriminant analysis. The canonical 
discriminant analysis further identified three traits 
namely tuber dry matter content, fresh tuber yield and 
yam mosaic virus disease susceptibility as highly 
distinguishing traits for the observed variation among 
individual clones in the dataset. These findings are in 
agreement with Eticha et al. [8] who also identified key 
traits that contributed to variability in agronomic and 
quality traits of hull-less spring barley using principal 

component analysis and canonical discriminant 
analysis. 

CONCLUSIONS  

The genetic parameter estimates established that 
the non-genetic effects contribute more to the total 
phenotypic variability in most of the studied traits in 
white yams than the genetic effects. Reduction of trait 
data dimensionality using PCA and subsequent CDA 
identified tuber dry matter content, yam mosaic virus 
severity score and fresh tuber yield as most important 
traits in distinguishing white yam genotypes variability 
in MET. 
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