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Abstract: Fossil energy consumption is considered as an important source of carbon emission worldwide. As one of 
ecological footprint methodology, carbon footprint is emerging as an effective tool for carbon emission management, 
especially that from fossil energy consumption. Taking one of the most developed regions in China, the Yangtze River 
Delta as a case study, this paper analyzes carbon footprint of fossil energy consumption through productive lands by 
explicitly addressing spatial changes of land use/cover. The impacts of land use change on the carbon footprint are then 
assessed by coupling changes in land use/cover and fossil energy consumption. The results show that carbon footprint 
from energy consumption in the Yangtze River Delta increased from 322531 km2 in 2001 to 862924 km2 in 2013. Despite 
the fact that productive lands (i.e., forest and grasslands) were rising, the carbon footprint was still in deficit, about 
831873 km2 in 2013. According to scenario analysis, carbon footprint is expected to reach 2572837 km2 in 2025 in the 
condition of ecological protection, 2604049 km2 in the condition of business as usual and 2609125 km2 in cultivated land 
protection. The results propose urgent policy measures to protect productive lands to reduce the ecological pressure of 
carbon emissions from energy consumption. 
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1. INTRODUCTION 

The global land surface temperature increased 
rapidly, at a rate of 1.59  °C between 1850 and 1900 
and between 2011 and 2020 (IPCC, 2021). The 
warming is likely to be mainly due to continuously 
increase in fossil energy consumption and therefore its 
carbon emission (Oreskes, 2004). The carbon emission 
from fossil energy consumption is widely concerned by 
scientific communities in recent years. Luderer et al. 
(2018) explored the residual carbon dioxide (CO2) 
emissions from fossil fuels to hold global warming in 
1.5–2  °C pathways to reach the goals of the Paris 
Agreement. McGlade and Ekins explored the 
emissions limit for fossil fuel production to limit global 
warming to 2 °C in different regions (Christophe and 
Paul, 2015). Despite widespread concerns, few 
researches addressed the carbon emission from 
aspects of carbon accumulation by terrestrial 
ecosystems to offset it (Piao et al., 2009; Tigges and 
Lakes, 2017). 

Ecological footprint tracks national economies 
energy and resource throughput and translates them 
into biologically productive areas necessary to produce 
these flows (Inch, 1995; Wackernagel et al., 1999; 
Fang et al., 2014). As one of ecological footprint, 
carbon footprint (CF) refers to the land area to 
assimilate the CO2 produced by the mankind (Pandey  
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et al., 2011). In recent years, carbon footprint becomes 
one of the widely recognized methods to evaluate the 
impacts of carbon emissions on the environment 
pressure (Fantozzi and Bartocci, 2016). For instances, 
Simion et al. (2013) proposed an ecological footprint 
indicator by integrating land occupation, CO2 emissions 
from fossil energy and nuclear energy use to do 
environmental sustainability assessment in European 
countries. Zhao et al. (2014) estimated the carbon 
emissions and carbon footprint in Nanjing city from 
2000 to 2009. Ma et al. (2018) analyzed the ecological 
pressure of carbon footprint in passenger transport for 
all the provinces and autonomous regions of China 
over the period 2006–2015. Chuai et al. (2012) 
assessed the carbon emission from energy 
consumption and carbon footprint in different regions of 
China from 1999 to 2008. Qian et al. (2015) analyzed 
the land carrying capacity using ecological footprint and 
index system method by using Xiamen City, China as a 
case. Although many studies addressed such issue as 
carbon footprint of energy use, few works addressed 
the effects of land use/cover changes and thus 
productive land changes on it. Therefore, more 
attention should be paid to the relationships between 
carbon footprint and land use/cover changes (Jeroen 
and Grazi, 2014).  

This paper examines temporal-spatial changes of 
land use/cover on carbon footprint by addressing 
dynamics of productive lands. As one of the bottom-up 
approaches, Cellular Automata (CA) has been widely 
employed in simulating spatial dynamics of land 
cover/use change (Clarke et al., 1997; Wu and 
Webster, 1998; Xia et al., 2013). In particular, 
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GeoSOS-FLUS which was developed from CA, has 
advantages on explicitly simulating long-term spatial 
trajectories of multiple land use/cover changes (Liu et 
al., 2017). In addition, Markov chain model has a merit 
on describing the probabilistic relationship between the 
attributes of a variable and the position of this variable 
in a time sequence, including land use change 
(Bourne, 1969). On this basis, carbon footprint model is 
to be improved by explicitly addressing spatial changes 
of land use/cover. To reflect probable changes in land 
use/cover change, scenario analysis was performed 
assuming future developments of ecological protection, 
business-as-usual and cultivated land protection. As 
one of the most developed and densely populated 
regions in China, the Yangtze River Delta (YRD) was 
selected as a case study. The objectives of this study 
were to (1) analyze the land use/cover change by 
coupling Markov and GeoSOS-FLUS, (2) propose an 
improved carbon footprint model by explicitly 
addressing spatial changes of land use/cover, and (3) 
detect the carbon footprint changes by linking land 
use/cover and fossil energy consumption using the 
Yangtze River Delta, China as an instance. 

2. STUDY AREA AND DATA PREPROCESSING 

2.1. Study Area 

In this paper, the study area is located in the 
Yangtze River Delta (YRD) (Figure 1). The YRD lies 
between 118°E–123°E and 28°N–34°N, with an area of 
104,985 km2. As one of sub-tropical monsoon region, 
the YRD is known as its favorable conditions including 
concurrent rainfall and heat energy on vegetation 
growth. Furthermore, it encompasses the entire city of 
Shanghai, the southern part of Jiangsu Province 
(Suzhou, Wuxi, Changzhou, Nanjing, Zhenjiang, 
Nantong, Taizhou, Yangzhou) and the northern part of 
Zhejiang Province (Hangzhou, Ningbo, Shaoxing, 
Jiaxing, Huzhou, Taizhou and Zhoushan). Since 
economic reform in China in 1978, the YRD has 
witnessed fast industrialization and unprecedented 
urbanization. The gross domestic product (GDP) in the 
YRD reached US$ 3.06 trillion in 2021 (approximately 
17.26% of the total GDP in China). 

 

Figure 1: The location of Yangtze River Delta. 
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2.2. Data and Preprocessing 

The data in this study includes time series of data 
on fossil energy consumption in the aforementioned 16 
cities, land use data, net primary productivity data 
(NPP), digital elevation model (DEM) data, 
transportation and administrative boundaries data. The 
fossil energy consumption data were collected for the 
period 2001-2013 from several statistical yearbooks, 
including China’s energy statistical yearbook, statistical 
yearbook of Jiangsu Province, statistical yearbook of 
the YRD, statistical yearbooks of Taizhou and 
Zhoushan. For assuring continuity and consistency, 
raw coal, gasoline, diesel and electric power were 
selected from 2001 to 2013. As to the land use and the 
NPP data, the Moderate Resolution Imaging 
Spectroradiometer (MODIS) products (MCD 12 and 
MOD17A3) was downloaded from NASA's Land 
Processes Distributed Active Archive Center (LP 
DAAC). The original data were projected from their 
original sinusoidal projection to geographic grid cells 
using MODIS Reprojection Tool (MRT). Locational 
(spatial) factors including various proximities to 
attraction centres were addressed to drive land use 
changes (Liu et al., 2017). All the spatial proximities 
variables were obtained using Geographic Information 
System (GIS). 

3. METHODS 

3.1. Coupling Markov and GeoSOS-FLUS to 
Simulate Land use Change 

In past decades, many methods were proposed to 
capture land use/cover changes, including non-spatial 
and spatial models (Huang and Cai, 2017). In this 
paper, temporal-spatial dynamics of the land use/cover 
were modeled by coupling the Markov and GeoSOS-
FLUS. In detail, the amount of various land use/cover 
was first modeled using the first-order Markov model 
(Bourne, 1969). Taking the land use/cover area in 2000 
as the initial state matrix: Sinit = [S1, S2 , S3, S4 , S5 , S6 , ] , 
transfer matrix of various land use type from 2000 to 
2013 can be obtained as follows: 
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where  且 . The state after 
transferred ( ) for m times can therefore be 
obtained as: 

  
Strans = Sinit! pij n( )m

          (2)  

Based on the results from Markov prediction, spatial 
pattern of the land use/cover was simulated using 
GeoSOS-FLUS. The GeoSOS-FLUS was firstly 
developed by coupling system dynamics (SD), artificial 
neural network (ANN) and geographical cellular 
automata. It is an integrated model for multi-type land 
use scenario simulations by coupling human and 
natural effects (Liu et al., 2017). Firstly, ANN is used to 
train and estimate the probability-of-occurrence of each 
land use type on a specific grid cell. In the input layer, 
input variables include distance-based and natural 
variables can be mathematically expressed as: 
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where x represents the slope, distances to city center, 
railway, highway, roadway, forest, grassland and so on. 
In the hidden layer, the signal received from all the 
input neurons on grid cell p at time t is estimated as: 

  
net j p,t( ) = wij ! xi p,t( )

i
"          (4) 

where Wij means an adaptive weight between the input 
layer and the hidden layer, which is calibrated in the 
training process. Further, the probability-of-occurrence 
P(p,k,t) of land use type k on grid cell p at training time t 
is estimated according to the following equation:  
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             (5) 

where  is an adaptive weight between the hidden 
layer and the output layer. To reflect the represent the 
inheritance of previous land use types among different 
land use types, inertia coefficient is defined as: 
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where  denotes the difference between the macro 
demand and the allocated amount of land use type k 
until iteration time t-1. 

By coupling Markov and GeoSOS-FLUS, land 
use/cover change in the YRD was simulated under 
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three different scenarios: business as usual (BAU), 
urban development and ecological protection (UEP), 
and urban development and cultivated land protection 
(UCP). 

3.2. IPCC Carbon Inventory and Grey Model 
Methods to Estimate Carbon Emission from Fossil 
Energy Consumption 

There are many ways to estimate carbon emissions, 
including life cycle assessment (LCA), input output 
method (IO), Kaya carbon emission identity method 
and IPCC carbon inventory method (IPCC, 1996; 
Mahony, 2013; Jing et al., 2016; Jiang and Li, 2017). In 
this paper, carbon emissions from fossil energy 
consumption was calculated using carbon inventory 
method recommended by IPCC. For the i-th energy (Ei, 
ton), its carbon emission (Ei) could be calculated as: 

 Ei =Mi ! Fi            (7) 

where Mi is the total amount of i-th type of energy 
consumption (104 tce); Fi  is the carbon emission 
coefficient of the i-th energy (t C tce-1). Table 1 shows 
the standard coal coefficient and carbon emission 
coefficient of raw coal, gasoline and diesel.  

Table 1: Carbon Emission Factor for Different Types of 
Fuels 

Types Standard Coal 
Coefficient 

Carbon Emission 
Coefficient 

Raw coal 0.7143（kgce/kg） 0.7559(104t/104tce) 

Gasoline 1.4714（kgce/kg） 0.5538(104t/104tce) 

Diesel 1.4571（kgce/kg） 0.5921(104t/104tce) 

 
Based on equation 7, carbon emission from raw 

coal, gasoline and diesel was calculated for the period 
2001-2013. Furthermore, Grey Model was employed to 
estimate future carbon emission. Concretely, a grey 
system refers to a system with the fuzziness of 
hierarchical and structural relations, the randomness of 
dynamic changes, and the incomplete or indeterminacy 
of the index data (Deng, 1990). In particular, Grey 
Model was widely employed in forecasting energy 
consumption and carbon emission (Boran, 2015; 
Hamzacebi and Karakurt, 2015; Fei et al., 2015).  

As one of important components of grey system 
theory, Grey Model is characterized by simple 
modeling process, concise model expression, easy 
solution and wide application (Hsu et al., 2003; Lee and 
Tong, 2011). In particular, GM(1,1) model, which 
consists of a first order differential equation containing 

only one variable, is the most commonly applied grey 
model (Dai et al., 2018; Wang et al., 2018). In this 
paper, the GM (1, 1) was employed to estimate the 
carbon emissions assuming a continually consistent 
development of economy, population and technological 
innovation in present periods. If 

 is an original 
sequence with non-negative values, the GM (1,1) can 
be established as follows: 

Conduct an accumulated generating operation of 
x(0) to obtain sequence x(1):  

         (8) 

where the accumulated generating operator (AGO) is 
defined as 
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 Based on equation 9, x(1)(t + 1) can be solved as: 
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Finally, the inverse AGO method is employed to 
obtain the forecasting value: 

  
x̂ 0( ) k +1( ) = x̂ 1( ) k +1( )! x̂ 1( ) k( )(k = 1,2,""",n)      (14) 

Further details about the GM (1, 1) can be found in 
Deng’s and Wang’s studies (Jiang and Li, 2017; Wang 
et al., 2018). 



24     Journal of Environmental Science and Engineering Technology, 2022, Vol. 10 Xia and Pei 

3.3. Assessing the Changes of Carbon Footprint in 
the YRD 

In this paper, carbon emission of fossil energy 
consumption from 2001 to 2013 was estimated using 
IPCC carbon inventory. Probable changes of the 
carbon emission were further predicted using the 
GM(1,1) model. By using the NPP as an indicator of 
carbon absorption, carbon deficits were analyzed 
between carbon absorption and carbon emission from 
fossil energy consumption. In addition, carbon footprint 
of fossil energy consumption was calculated using an 
improved method by explicitly addressing spatial 
changes of land use/cover. The carbon footprint deficits 
were then analyzed by comparing existing productive 
land area with the carbon footprint from fossil energy 
consumption. 

Past studies found that forest and grassland show 
mainly carbon sequestration effect. However, cultivated 
land and urban land are frequently carbon sources 
(Fang et al., 2007; Pei et al., 2018; Pei et al., 2021). 
Assuming forest and grassland as productive lands, 
carbon footprint was calculated as: (1) analyze the 
carbon absorption of forest and grassland based on 
published literatures; (2) calculate the carbon 
absorption ratio of the YRD according to the average 
carbon absorption coefficient and the land area; (3) 
analyze the productive land area to absorb carbon 
emissions from fossil energy consumption. In this 
paper, an improved carbon footprint model was 
proposed to address spatial changes of land use/cover. 
That is, the proportion of the forest and grassland is 
simulated to reflect the effect of land use/cover 
changes on carbon footprint. In detail, the carbon 
footprint of fossil energy is calculated as follows: 

      (15) 

where  is the total amount of carbon footprint of 

fossil energy consumption (hm2) of the i-th region;  is 
the i-th type of fossil energy consumption (1×104tce), 
where the energy is raw coal, gasoline and diesel;  is 
the carbon emission coefficient of the i-th energy (tC 
tce-1);  and  is the net ecosystem production 
(NEP) of the forest and grassland, respectively; In this 
study, the  and  was determined as global 
average NEP of the corresponding vegetation type 
(i.e., 3.809592 tC hm-2 for forest and 0.948229 tC hm-2 
for grassland) (Xie et al., 2008; Chen et al., 2013);   
and  are the carbon absorption ratios of forest and 
grasslands in the YRD respectively. In past studies, the 
terms;   and  was frequently calculated using 
quantitative analysis. In particular, productive lands 
(forests, grasslands, arable lands, gardens, and other 
agricultural lands) contain different carbon stock due to 
difference of the land use/covers locally. It is difficult to 
reflect the effect of temporal-spatial pattern of various 
land use/covers on them using such method. Thus, 
land use/cover change and the NPP were introduced to 
reflect the impacts of spatial changes of land use/cover 
on carbon footprint. The ratio of the forest and 
grassland was calculated to estimate the productive 
land as follows: 

         (16) 

where  is the forest absorption ratio;  is the 
absorption of the forestland;  is the absorption of 
the grassland. Both the and  were compiled 
using the NPP dataset from MODIS products. The 
absorption ratio of grassland is calculated in the same 
way as forest lands. 

4. RESULTS 

4.1. Validation of the GeoSOS-FLUS and GM (1,1) 

In this study, a cell-by-cell comparison was 
conducted to validate the GeoSOS-FLUS model when 

Table 2: Confusion Matrix and Kappa Coefficient between Actual and Simulated Land use in the YRD 

Simulated 
Actual 

Water Forest Grass land Cultivated lands Urban lands Unused lands Accuracy% 

Water 2379  0  3 0  0  0 99.87  

Forest 4  20397  586  1432  924 5  87.36  

grassland 4  388  395  235  80  12  35.46  

Cultivated lands 0  1838  63  7444  286  2  77.28  

Urban lands 0  857  13  499  5450  4  80.47  

Unused lands 0  2  12 0 3  17  50 

Kappa 0.74 
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simulating the land use change in the YRD. We further 
analyzed confusion matrix and kappa coefficient of the 
simulated land use in the YRD in 2013 (Table 2). We 
found that the Kappa coefficient is 0.774. The results 
suggest that the GeoSOS-FLUS model can be effective 
in simulating the land use change in the YRD. In 
addition, the GM (1,1) was validated using time series 
of carbon emission records in the YRD from 2001 to 
2013. As shown in Figure 2, a good accordance could 
be found between the simulated values and the 
measured carbon emission (R=0.93; N=208; P=0.000). 

 

Figure 2: Comparison of actual and simulated carbon 
emission. 

4.2. Changes of Land use/Cover in the YRD 

As shown in Figure 3a, land use/cover types in the 
YRD is mainly forest and cultivated lands. The 
proportion of forest, cultivated lands, grassland and 
urban lands in 2001 in the YRD is 56%, 26%, 2% and 
11%, respectively. With the fast urbanization, large 
cultivated lands were replaced into urban land use. For 
instances, the cultivated lands showed an obvious 
decrease, approximately 22% of the YRD in 2013 
(Figure 3b). The proportion of urban lands increased to 
about 16% of the whole region in 2013, instead. The 
forest lands firstly showed an increased trend before 
2008, and then declined owing to the project and 
policies about conversing cropland to forest or grass 
lands in China (Liu et al., 2017). In addition, grassland 
showed a small increase in past decade. Future land 
use was further analyzed for the period 2014-2025 by 
assuming different development strategies, including 
BAU, UEP and UCP scenarios. We found that forest 
and cultivated lands are to be reduced in the process of 
rapid urban expansion in the BAU scenario in the YRD. 
As to the productive land area in the BAU, UEP and 
UCP scenarios, we found that the changes in 
productive land area is similar in that of forest land 
area. In detail, the productive land area showed an 
increasing trend before 2008, at a rate of 268 km2 
year1. However, such trends were reversed in 2008. 
Despite the increase of grassland, total productive land 

 

Figure 3: Spatial distributions of the land use for the years 2001 and 2013. 
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area still showed a decrease, at a rate of 27 km2 year-1 
in the UEP scenario, 250 km2 year-1 in the BAU 
scenario and 425 km2 year-1 in the UCP scenario, 
respectively.  

4.3. Changes of Carbon Emission and Absorption 

Both carbon emission and carbon absorption were 
analyzed in the YRD over the period from 2001-2025. 
In particular, carbon emissions from fossil energy 
consumption were increasing in the YRD from 2001 to 
2013, at a rate of 986.83!104 tons year-1 (R2=0.943; 
P=0.000). Assumed that no technology and policy 
reformation, the carbon emissions in the YRD are 
expected to rise up to nearly 500 million tons of carbon 
in 2025, approximately 6 times more than that in 2001. 

To examine changes of the carbon deficit in the 
YRD, the carbon absorption by terrestrial ecosystems 
was also analyzed from 2001 to 2025. According to our 
calculations, average carbon absorption from 2001 to 
2013 was 2307.40×104 tons. In particular, the carbon 
absorption reached 2354.68×104 tons of carbon in 
2008, probably due to the project and policies about 
conversing cropland to forest or grass lands in China 
(Liu et al., 2017). In addition, average carbon 
absorption reached 2186.96×104 tons of carbon over 
the period 2014-2025 in the BAU scenario. However, 
average carbon absorption reached 2232.99×104 tons 

of carbon and 2153.17×104 tons of carbon in the UEP 
and UCP scenarios, respectively. 

We further analyzed changes of the carbon deficits 
between carbon emission from energy consumption 
and the carbon absorption by terrestrial ecosystems in 
the YRD. We found that carbon deficits in the YRD 
showed an overall increasing trend over the period 
2001-2025, at a rate of 1560.1 tons of carbon·year-1 to 
1566.1 tons of carbon·year-1 owing to different 
development strategies in future decade. However, an 
obvious difference in the carbon deficits could be found 
between 2001-2013 and 2014-2025. In the period 
2001-2013, the carbon deficit ranged between 
6069.88×104 tons of carbon in 2001 and 
317482.79×104 tons of carbon in 2013. From 2014 to 
2025, the carbon deficit could be different under the 
aforementioned three scenarios in the YRD. 
Concretely, carbon deficit can reach 47251.68×104 
tons of carbon, 47168.96×104 tons of carbon and 
47312.32×104 tons of carbon by 2025 in the BAU, UEP 
and UCP scenarios, respectively. The carbon deficit is 
expected to strengthen in the condition of similar 
energy technology in future decades. 

In addition, spatial heterogeneities of carbon 
emissions, carbon absorption and its carbon deficit 
were further analyzed by cities for the periods 2001-
2013 and 2014-2025, respectively. Figures 4a and 4b 
show annual average carbon emissions in the YRD 

 

Figure 4: Spatial distribution of average carbon emission for the period (a) 2001-2013 and (b) 2014-2025. 
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over the period 2001-2013 and 2014-2025, 
respectively. Overall, the cities in the eastern YRD 
consumed more fossil energy and thus produced more 
carbon emission than other regions in the period 2001-
2013 (Figure 4a). The carbon emission was particularly 
high in Shanghai, approximately 35 million tons of 
carbon. In addition, the carbon emissions were 
relatively lower in Suzhou and Ningbo than in 
Shanghai. In contrary, Zhoushan had the least carbon 
emission, about 0.83 million tons of carbon. Figure 4b 
shows the predicted average carbon emissions from 
fossil energy consumption by cities from 2014 to 2025. 
We found that all cities show obvious increases in the 
carbon emissions between 2014 and 2025 in the YRD. 
However, the distribution of carbon emission is overall 
similar to that of average carbon emissions from 2001 
to 2013. That is, cities with large carbon emission are 
mainly distributed in the eastern YRD, including 
Suzhou, Shanghai and Ningbo. In particular carbon 
emission in Suzhou City is expected to show the 
fastest increase of the carbon emission in the YRD 
(3.13 million tons of carbon per year). In addition, 
Zhoushan can still exhibit the slowest increase in 
carbon emission among the 16 cities in the study area, 
at a rate of only 0.06 million tons of carbon per year.  

Figure 5a shows average carbon absorption in the 
YRD from 2001 to 2013. On the whole, the carbon 
absorption shows a gradual decreasing trend from 
southwest to northeast. In particular, the carbon 

absorption was relatively small in Nantong, Zhoushan, 
Jiaxing, Shanghai and Taizhou (in Jiangsu Province) 
(less than 60×104 tons of carbon). In contrary, 
Hangzhou, Taizhou, Shaoxing, Ningbo, Huzhou (in 
Zhejiang Province), Nanjing and Suzhou have over 
100×104 tons carbon absorption. Carbon absorption 
during 2014-2025 was also analyzed based on three 
different development strategies: BAU, UEP and UCP 
scenarios. Similar pattern could be found between the 
three different scenarios and the average carbon 
absorption during 2001-2013 (Figure 5a). 
Nevertheless, some differences could also be found 
among the three scenarios. For instances, it can have 
the least carbon absorption in Zhoushan City, 
approximately 30.11×104 tons of carbon in the UEP 
scenario, 29.86×104 tons of carbon in the BAU 
scenario and 29.51×104 tons of carbon in the UCP 
scenario. In contrary, Hangzhou can have the 
maximum carbon absorption in the YRD, about 
548.17×104 tons of carbon in the UEP scenario, 
545.26×104 tons of carbon in the BAU scenario, 544.02 
tons of carbon in the UCP scenario, respectively. 

The carbon deficit in the period 2001-2013 was also 
calculated to estimate the carbon balance in the YRD. 
As shown in Figure 5b, the carbon deficit in the middle 
and eastern part of the YRD was even higher than the 
cities in other regions. Concretely, carbon deficits in 
several economically developed cities such as 
Shanghai, Suzhou, Ningbo and Wuxi were relatively 

 

Figure 5: Spatial distributions of (a) average carbon absorption and (b) carbon deficit from 2001-2013. 
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large, exceeding 1000×104 tons of carbon. In contrary, 
Zhoushan has the least carbon deficit, about 52.78×104 
tons of carbon. As to the carbon deficit during 2014-
2025, large differences could be found among the 16 
cities in the YRD. For instance, average carbon deficit 
in Suzhou was approximately 47 times as much as that 
in Zhoushan. In details, the carbon deficit in Zhoushan 
is 122.18×104 tons of carbon in the UEP scenario, 
122.43×104 tons of carbon in the BAU scenario and 
122.78×104 tons of carbon in the UCP scenario. In 
addition, it is 5725.14×104 tons of carbon in the UEP 
scenario, 5731.45×104 tons of carbon in the BAU 
scenario and 5734.10×104 tons of carbon in the UCP 
scenario in Suzhou, respectively. Despite it, similar 
patterns of the carbon deficit in different cities could 
also be found between the three scenarios and the 
average carbon deficits during 2001-2013. 

4.4. Changes of Carbon Footprint 

We found that the carbon footprint deficit from 
energy consumption was on the rise in the YRD from 
2001 to 2013. Particularly, it reached 468455 km2 in 
2013, about three times as many as that in the year of 
2001. Furthermore, the carbon footprint deficit is 
expected to be continually increased in future. 
Concretely, the carbon footprint during 2014-2025 
could be different in different development strategies. 
We found that changes in productive lands could 
reduce the carbon footprint. However, the effects are to 
be very limited. Carbon footprint is expected to be 
much more than the actual productive land area during 
2014-2025 even if it is in the UEP scenario. That is, it is 
limited to reduce the carbon footprint from energy 
consumption by only regulating the land use pattern in 
the YRD because of the shortage of productive lands. 
As a result, carbon footprint deficit was and will be 
rising in the YRD in future. For example, from 2001 to 
2013, the carbon footprint was increasing from 229259 
km2 to 547427 km2 while productive land was 
decreasing from 81706 km2 to 79479 km2. At the same 
time, carbon footprint deficit was increasing from 
148069 km2 to 468455km2. The carbon footprint deficit 
is estimated to be 1296080 km2 in 2025 even in the 
UEP scenario. 

To further elucidate the difference, changes in 
carbon footprint, as well as carbon deficits were 
spatially analyzed by cities in the YRD for the periods 
2001-2013 and 2014-2025, respectively. For the period 
2001-2013, we found that carbon footprint deficit was 
more serious in the central and eastern YRD than other 
parts in the region. In detail, average carbon footprint in 

Shanghai was approximately 96162km2, approximately 
40 times more than that in Zhoushan, which had the 
least average annual carbon footprint among the 16 
cities in the YRD. Average carbon footprint in Suzhou 
was up to 53155 km2, about half of the carbon footprint 
in Shanghai. In addition, it is obvious that spatial 
distribution of carbon footprint deficits shares nearly the 
same principle with that of carbon emission. During 
2014-2025, spatial distributions of carbon footprint and 
deficit will be similar to that during 2001-2013 in all 
three aforementioned development strategies. In 
particular, Suzhou is expected to have the highest 
carbon footprint in the YRD in 2025, with 163877 km2, 
160556 km2 and 170379 km2 in the BAU, UEP and 
UCP scenarios, respectively. In addition, Zhoushan can 
also have the least carbon footprint and deficit, merely 
2.77% of carbon footprint and 2.16% deficit in Suzhou 
in the UEP scenario. 

5. DISCUSSIONS 

With fast industrialization and unprecedented 
urbanization, energy consumption is continuously 
increasing, and therefore cause large ecological 
pressures worldwide. In this paper, the impacts of land 
use change on carbon footprint from fossil energy 
consumption were assessed using one of typical highly 
urbanized regions, the YRD in China as a case. To 
overcome the spatial limit of existing carbon footprint 
model (Chen et al., 2013), an improved carbon footprint 
model was proposed by explicitly addressing the 
changes in productive land in the YRD. On this basis, 
the changes in the carbon footprint were therefore 
examined by coupling land use changes and carbon 
emissions from energy consumption. Our results 
indicate that productive lands could offset and reduce 
the carbon footprint. However, carbon absorption by 
terrestrial vegetation was relatively small in comparison 
with the carbon emission from fossil energy 
consumption in the YRD. The positive effects of 
productive lands on carbon emission are to be very 
limited. Furthermore, the carbon absorption is expected 
to be reduced according to scenario analysis. The 
carbon footprint from energy consumption also shows a 
continuously increasing trend, and are expected to 
increase in future. Despite the possible postponement 
by ecological protection, the effect is very limited owing 
to large fossil energy consumption. Therefore, it is in 
urgent need to reduce carbon emissions by adjusting 
the energy structure and strengthening the ecological 
management (Pei et al., 2021). 
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6. CONCLUSIONS 

Taking the Yangtze River Delta, which is one of the 
most developed regions in China, as a case study, this 
paper analyzes the carbon footprint of fossil energy 
consumption using productive lands as an indicator by 
explicitly addressing spatial changes of land use/cover. 
The impacts of land use change on the carbon footprint 
are then assessed by coupling changes in land 
use/cover and fossil energy consumption. The results 
propose urgent policy measures to protect productive 
lands to reduce the ecological pressure of carbon 
emissions from energy consumption. This paper 
analyzed the probable changes in future carbon 
footprint by simulating the energy consumption and 
land use changes. However, energy consumption is 
only estimated assuming a continually consistent 
development of economy, population and technological 
innovation. Our results may therefore be biased due to 
limitations of the prediction model. In future studies, we 
will try to develop different scenarios to reflect 
economic development and technological advance. 
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