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Control of Nonlinear Dynamics of Quantum Dot Laser with External 
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Abstract: We examine the nonlinear dynamics of a semiconductor quantum-dot (QD) laser subject to external optical 
feedback by using dimensionless equations numerical model. In our QD laser model we employ dynamic for ground and 
excited state processes, additionally between the QDs and the wetting layer (WL). This enables us to tune the output of 
external cavity modes QDs by changing the bias current, delayed time and feedback strength to investigate how they 
affect the stability properties of the QD laser. Our results show that high bias current and small α-factor value lead to 
lower sensitivity of the laser towards optical feedback. 
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1. INTRODUCTION 

One particularity of semiconductor lasers is their low 
tolerance to optical feedback, which can be of 
disadvantage for technological applications. For 
example, to use semiconductor lasers as transmitters 
in optical networks, expensive optical isolators are 
needed to avoid back reflections that can lead to 
temporal instabilities of the lasers (coherence 
collapse). 

However, there are also several applications that 
take advantage of the rich dynamics induced by optical 
feedback. For instance, feedback induced chaos can 
be used for secure chaos communication and chaos 
key distribution [1-6]. Furthermore, short optical 
feedback in an integrated multi-section laser has been 
used to significantly improve the modulation bandwidth 
of a directly modulated laser [7]. 

Moreover, from a dynamical system point of view, 
semiconductor lasers subject to optical feedback are of 
high interest, because the optical feedback introduces 
a delay into the system. The delay in turn induces a 
high dimensionality, which results in a rich 
phenomenology, ranging from multistability, bursting, 
intermittency, irregular intensity dropouts (low-
frequency fluctuations LFFs), and fully developed 
chaos. 

A review focusing on laser instabilities is given in 
[8]. Semiconductor lasers have also been employed to 
demonstrate the stabilization of steady states (cw 
emission) or periodic oscillations (self-pulsations) by 
non-invasive time delayed feedback control [9-14] (see 
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[15, 16] for an overview). Further, delay synchroni-
zation of coupled lasers [17], and networks of delay 
coupled lasers [18, 19] as well as bubbling in coupled 
lasers [20, 21] have been investigated. A recent review 
summarizing the dynamics and the applications of 
delay coupled lasers is given in [22]. QD lasers display 
a higher dynamical stability with respect to optical 
feedback [23-27] than conventional QW semiconductor 
lasers. This allows QD laser transmitters to operate 
without expensive optical isolators [28]. Furthermore, 
due to their increased dynamical stability, the route to 
chaos can be observed in QD lasers more clearly. The 
improved performance of QDs under optical feedback 
has been linked to an increased RO damping and a 
reduced phase-amplitude coupling [29-32]. 

So in our rate equation model, we exceed the rate 
equations to a ground and exited states (ρgs, ρes), and 
a single non-resonant population Nwl. Due to Pauli 
blocking, the number of available states in the dot are 
limited on two states. In addition, the occupancy of the 
dot plays a major part on capture rate of charge carrier. 
Therefore, the model is based on the assumption that 
the carriers are directly injected into the wetting layer 
(WL) of the device, so that they can be captured into 
the QDs. Furthermore, the model neglects the charge 
carrier transport without the active region. A similar 
approximation was used in the QW devices [33]. 

The paper is organized as follows: Before we 
perform any numerical bifurcation studies we introduce 
the QD laser model with external optical feedback in 
Sec. II. In Section III, we summarize the results for Ԑ = 
0. The next two sections are devoted to the study of the 
full delay differential equation (DDE) for Ԑ ≥ 0. Section 
IV presents numerical results on basic bifurcations of 
bias current and delay time. Sections V is devoted to 
bifurcation diagrams for two representative values of 
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the linewidth enhancement factor α, and Θ. Finally, we 
summarize in Section VI. 

2. QUANTUM DOT LASER MODEL 

The rate equations for a QD laser subject to optical 
feedback formulated by O’Brien et al. [29] consist of 
three equations for the amplitude of the normalized 
laser field in the cavity E, the occupation probability ρ 
of a QD in the laser, and the number n of carriers in the 
reservoir per QD. The carriers are first injected into the 
quantum well before being captured into the QD as 
previously used in other models describing QD laser 
dynamics [34, 35]. However, because of Pauli blocking, 
the capture rate depends on the occupancy level of the 
QDs. The system with a ground and exited states in the 
QDs can be described with the following rate 
equations: 
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where the dot denotes derivation with respect to time. 
The band diagram of the model used here is shown in 

Figure 1. Here, 
  
E(t) = Se

!i"(t) is the normalized 
slowly varying complex amplitude of the electrical field 
given in polar coordinates by the photon number S and 
the phase Φ, and time t is scaled with 
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intrinsic resonance of the optical mode. γs is the photon 
decay rate in the cavity. The parameter α is the 
linewidth enhancement factor, 
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cross section of interaction of carriers in the dots with 
photons; vg is the group velocity; and 
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where Г is the confinement factor and d is the 
thickness of the dot layer. 

Nd is the two-dimensional density of dots. Although 
being completely determined by wo and τ the feedback 
phase Θ is treated as an independent parameter since 
small variations of the external cavity length cause a 
variation of the phase Θ over its full range [0; 2π] while 
the external roundtrip time τ is hardly affected by these 
fluctuations. This is a well-established procedure in the 
analysis of semiconductor lasers subject to optical 
feedback [36-39]. Hence, we always consider Θ as a 
free parameter in our two-parameter bifurcation 
diagrams presented in Sec. IV and V. The parameter γ 
measures the injected field strength. The phase shift of 
the light during one round trip in the external cavity 
(  ! = 2L / c ) is given by 
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With wo denoting the frequency of the solitary laser at 
the lasing threshold. The field labeled by the subscript 
τ, Eτ, and there with !" , are the electric field amplitude 

and the optical phase taken at the delayed time t-τ. 
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and 
 
!

es
 are the occupation probability in a ground and 

exited states in the quantum dots; Nwl is the carrier 
density in the well; γn and γd are the non-radiative 
decay rates for carriers in the WL and dot respectively; 
γcwl and γces are the capture rate from wetting layer into 
an empty exited state and from exited into ground 
states respectively. J is the electrically injected pump 
current per dot, and it is the control parameter, q is 
elementary charge. The last terms in Eqs. (1.c) and 
(1.d) describe the rate of exchange of carriers between 
a ground and exited states in the dots and between the 
well and the exited state in the dots. Here we show that 
the mechanism for the capture of carriers into the dots 
can significantly alter the damping rate of the relaxation 
oscillations and, as a result, reduce the sensitivity to 
optical feedback. Carrier escape from the dots can be 
ignored because it is a temperature-dependent function 
controlling. This leads to a carrier capture time from the 
well that is dependent on the occupation probability of 
the dots. 

The field equation is a complex stochastic 
differential equation. The goal is to transform the 
complex stochastic differential equation for E (Eq. 1.a) 

 
Figure 1: Schematic energy band diagram of QW and QD. 
ΔEe, ΔEh denote the energy spacing of the QW band edge 
and the QD ground state (GS) for electrons and holes. ћω 
marks the GS lasing energy of the QD. 
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into two real stochastic differential equations for the 

photon density 
  
S = E

2  and the phase Φ. Neglecting 
the stochastic term this is just a transformation to polar 
coordinates. Averaging over the stochastic terms the 
final rate equations for the photon density S, the phase 
of the electric field Φ, and the three equations for the 
occupation probability of a ground and exited states in 
the QDs (ρgs and ρes) and carrier density in the WL 
(Nwl) read:  
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In our approach, the carrier-light interaction is 
summarized in the photon density S, which includes all 
longitudinal modes. The factor 2 in Eq. (2.e) accounts 
for the twofold spin degeneracy in the quantum dot 
energy levels. A similar factor 2 is included in the 
definition of the differential gain factor g in Eq. (2.a) 
[40]. For numerical purposes, it is useful to rewrite Eqs. 
(2) In dimensionless form. To this end, we introduce 
the new variables; 
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s
. The well-established assumptions 

here are that the delay time τ is larger than the laser 
roundtrip time inside the active region (Figure 1). Then, 
five coupled equations are essential for QD laser with 
external optical feedback and they show unstable 
oscillations and chaotic dynamics in their output 
powers like three coupled equations in Lorenz systems. 
This is shown by the corresponding the inter-spike 
interval (ISI) probability distribution which consisting of 
an exponentially decaying function of the time, typical 
of random processes, displaced by the pulse duration, 
acting as a refractory time. In the numerical 
simulations, the fourth-order Runge-Kutta algorithm is 
used, Graphics Berkeley Madonna and Origin version 
8.5 software are used to analyze the time series 
generated in the chaos regime. The analysis concerns 
the study of the attractors and the bifurcation scenario 
of the output laser. The parameter values used in the 
simulations are given in Table 1. 

Table 1: Numerical Parameters Used in the Simulation 
Unless Stated Otherwise 

Parameters Value Parameters Value 

xo 0.04 Г 2 0.07 

Φo 0.04 Г 3 5.32 

yo 0.8 Г 4 0.037 

zo 0.51 α 0.9 

wo 0.049 τ 5.78 

Г 8.12 Ԑ 0. 35 

Г 1 1.79 δo 0.17 

 

3. NUMERICAL RESULTS 

The corresponding turn-on dynamics of the QD-
laser without optical feedback (Ԑ = 0, in this case the 
evolution of the intensity and carrier densities do not 
depend on the phase of the electric field) obtained by 
numerical integration of Eqs. (3a-e) is shown in  
Figure 2. The assumed values of all numerical 
parameters appearing in Eqs. (3a-e) are listed in  
Table 1. If not stated otherwise they will be used for all 
subsequent simulations and path continuations. The 
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important difference between the three turn-on curves 
in Figure 2, is the damping of the relaxation oscilla-

tions. The colored line that corresponds to exponential 
decay of the photon density to its steady state value 
dependence of bias current values. This is the 
characteristically turn-on behavior of a QD laser 
corresponding to difference values of parameters (δO). 
Hence, this QD structure is labeled fast because 
increase bias current imply fast carrier exchange 
between QD and QW, here the difference rely only one 
variable to generate spikes. The turn-on dynamic of the 
reference QD structure shows relaxation oscillations 
that are more strongly damped than in the case of slow 
carriers but still observable. This case is called 
reference as it resembles the behavior found in 
common QD laser experiments [41]. It was investigated 
in previous dynamical studies of the QD laser with 
optical feedback [42, 43]. 

4. TURN-ON DYNAMICS OF TWO-PARAMETER 
BIFURCATIONS 

Our QD laser model in the form of Eqs. (3a-e) for  
Ԑ = 0 is described in Sec. III. In this section, we discuss 

 

  
Figure 3: two-parameter bifurcation diagrams of the photon number x vs. bias current for direct numerical DDE (a), the QD-QW 
parameters are changed in agreement with Table 1. And vs. delayed time (b), further parameter are fixed at wO = 0, Ԑ = 0.312, 
δo = 0.281. 

 
Figure 2: Turn-on dynamics of the QD laser without optical 
feedback. The bias current varies from δO = 2.5 (Green) the 
steady state to δO = 4.6 (Black) spiking. And the QD-QW 
parameters are changed in agreement with Table 1. 
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the turn-on dynamics of QD lasers of the DDEs for  
Ԑ ≥ 0 in two different parameters values: (i) in a 
configuration where there is bias current variable but 
with the same carrier lifetime and (ii) in a configuration 
where delayed time outside regions act as the affect 
factor (as in Figure 3). It is this element of infinite 
dimensionality that allows Eqs. (3a-e) to show much 
richer dynamics than the QD laser alone (when Ԑ = 0). 

In light of the explicit split into slow and fast 
variables of the system, what is presented here is a 
case study of a slow–fast system subject to delayed 
feedback. This more general aspect provides a second 
motivation, because it may also be of interest for other 
areas of application. For example, the issue of delayed 
feedback or coupling also arises in the context of 
interacting (populations of) neuron cells, which 
themselves may display dynamics on separate 
timescales. 

If we begin our analysis with the upper bifurcation 
diagram of Figure 3(a), from the figure, when the 
injection current is increased, one recognizes that the 
value of the steady-state solution of the carrier density 
is increased and the laser tends to be less sensitive to 
the feedback light. Finally, the laser reached stable 
oscillation state even in the presence of feedback. In 
optical feedback, the laser tends to less unstable for 
the increase of the bias injection current, but 
instabilities of the laser persist and never disappear. 
This is the big difference between bulk and QD laser 
with optical feedback. This is in contrast to the 
dynamics of coherent output with feedback, where a 
significant shift and broadening of these peaks occurs 
for increasing bias injection current. The clear 
difference behavior of bifurcation diagram shown in 

Figure 3(b). For increasing delayed time τ of lower 
bifurcation diagram becomes unstable in a Hopf 
bifurcation and the emerging periodic orbit bifurcates 
via period doubling. 

4. TURN-ON DYNAMICS OF TWO-PARAMETER 
BIFURCATIONS 

This section will discuss the dynamics of the QD 
laser as a function of feedback strength Ԑ and the 
linewidth enhancement factor α. As mentioned above 
modeling the short cavity regime results in sensitivity of 
the laser output to the phase Θ of the electric field. The 
feedback phase is fixed to π. and is only treated as a 
tunable parameter in Section II. Numerically obtained 
bifurcation diagrams as well as time series, ISI, and 
attractors will be discussed in order to elucidate the 
internal dynamics of the laser. 

4.1. For Θ = 0 and α = 0.9  

In the following simulations the dynamics of the QD 
laser with feedback is pumped at a bias current of  
δo = 0.17. For gradually increasing feedback strength Ԑ 
the local minima and maxima of the laser output, i.e., of 
the photon density, are recorded starting at time t = 0 
and plotted in a bifurcation diagram as shown in  
Figure 4. Note that the long integration time is chosen 
in order to avoid transient effects of the turn-on 
dynamics in the laser output. 

For small Ԑ < 0.24 the laser shows steady state 
operation at the first external cavity modes. At Ԑ = 0.24 
the external cavity modes loses stability in a 
supercritical Hopf bifurcation leading to a small stable 
limit cycle, i.e., to a solution with periodically modulated 
photon density. Thus, the bifurcation diagram for

 
Figure 4: Bifurcation diagrams of the photon density x dependence of the feedback strength Ԑ for small α = 0.9. 
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Figure 5: Time series (left), attractors and ISI (right) for selected feedback strengths Ԑ: rows (a–e) correspond to Ԑ = 0.25-0.31 
as indicated by the bifurcation diagram for small α = 0.9 and δo = 0.17 in Figure 4. 

Ԑ > 0.29 (see Figure 4 and the blowup Figure 5) shows 
two branches: the maxima and minima of the limit cycle 
oscillations. The two branches scale like the square 
root of the distance from the bifurcation point. This is 
the signature of a Hopf bifurcation. For Ԑ = 0.22 time 

series, attractor and ISI of these periodic pulsations are 
shown in Figure 5a (corresponding to the Figure 4). 
With further increase of the feedback strength Ԑ the 
system undergoes a period doubling route to chaos 
with windows of period two and three at Ԑ = 0.3 and 
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0.31 that are indicated as in the bifurcation diagram  
(Figure 3). The corresponding time series, attractors 
and ISI are depicted in Figure 5b and c, respectively. 
They correspond to two folded and three folded limit 
cycles in the phase space projection shown in  
Figure 5b and c. At Ԑ = 0.31 (d) the laser output is 
chaotic (dense dots at fixed Ԑ in the bifurcation 
diagram Figure 4), which can also be seen in the broad 
spectrum of Figure 5 and the large chaotic attractor in 
the phase space projections (Figure 5). The time series 
displays irregular pulse packages that are modulated 
with the frequency of the relaxation oscillations. This 
results in an erratic—sensitive to initial conditions—
sequence of homoclinic-like spikes on top of a chaotic 
background (Figure 5d). The corresponding ISI 
histogram (Figure 5d) shows that the aperiodic 
(chaotic) background triggers the spikes in an erratic 
sequence, as indicated by its exponential tails. 

However, on top of this background the ISI histogram 
displays a complicated structure of sharp peaks 
revealing the complex structure of unstable periodic 
orbits embedded in the chaotic attractor nonlinearly by 
the Ԑ. 

Figure 5a is show only one single period beyond  
Ԑ = 0.24. In a small range of Ԑ values before these 
global bifurcation we observe bistability: trajectories 
starting close to the saddle-point of the first external 
cavity modes are attracted by a delay induced limit 
cycle, whereas trajectories starting elsewhere 
(attractor's plane) end up in a stable node. In the output 
of the laser this delay induced limit cycle is manifested 
by regular pulse packages as they are depicted in 
Figure 5e. Looking at the phase space projections of 
Figure 6e it can be seen that starting from a maximum 
intensity point of one pulse package the excursion 

 
Figure 6: Time series (column 1), phase space attractors of the trajectory onto planes spanned by the photon density x and the 
occupation probability ground and excited states (y and z), and carrier density w in WL (column 2). Rows (a–c) correspond to  
Ԑ = 0.348, δo = 0.18 as indicated by column 1 lines (a–c) in the time series for small α = 0.9 and Θ = 0. 
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through the (x, y, w)-3D-space is similar to the turn-on 
dynamics of the QD-laser as the trajectory spirals 
towards a certain point in phase space. 

The description of the dynamics in QD lasers 
requires the inclusion of the interaction between 
discrete states localized at the QDs and the continuous 
ground and excite states at higher energies within the 
WL. Since we are interested in the investigation of the 
laser regime, i.e., the WL carrier density is very high, 
the capture dynamics within the QD-WL structure is 
dominated. The slow and fast capture for electron from 
WL into QD states (ground and excite) are calculated 
as a function of the injection current into WL. Figure 1a 
and1b, shows the scheme of the QD-WL structure 
illustrating the considered the capture of an electron 
from a WL with the QD into an energetically higher 
state and between ground and excite states. 

Outside the locking region, the slowly varying field 
amplitude E of the QD laser oscillates with a frequency 
close to the input detuning wo resulting in a periodic 
modulation of S with one maximum and four minimum 
(gray regions in Figure 6a). Approaching the periodic 
behavior from the outside of the locking region for small 
Ԑ, the flow on the large limit cycle slows above the 

small cycles fast, where the spikes will appear and then 
makes a quick excursion along the other part of the 
periodic orbit. Figure 6b depicts the dynamics close to 
the bifurcation (see Figure 3). The time series now 
displays regular pulsing of S, and the attractors on to 
the phase plane shows the big limit-cycle. This can be 
seen from Figures 6a-c by noting that the output is 
labeled by X, Y, Z and W. 

4.2. Impact of the Phase-Amplitude Coupling 
(Increase α-Factor) 

To far the discussion was limited to the regime of 
feedback strengths Ԑ where only one external cavity 
mode, i.e., the one that can be continued out of the 
solitary laser solution, is available to the QD laser. This 
is proven by Figure 4 that depicts the solutions for the 
Eqs. 3(a-e). Now, the impact of the phase-amplitude 
coupling on the dynamics of the optical feedback QD 
laser is analyzed. In the introduction of this paper, it 
was discussed that in models, in which the phase-
amplitude coupling is described by a constant α-factor, 
the dynamics of QD lasers is best approximated by 
small values of α, while QW lasers typically have large 
α-factors [44]. In Figure 7a, b, show at two values of Θ 
the same dynamics of the output laser. Thus, For QD 

 
Figure 7: Bifurcation diagrams of the photon density x of the possible external cavity modes in dependence of the feedback 
strength Ԑ for small α = 0.9 (a and b are compared between two values of Θ) and large α = 7.5 (c). 
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lasers, the locking tongue remains nearly symmetrical 
with respect to α. (Figure 6a) is compared to its 
dynamics with large α = 7.5 (Figure 7c). The dynamics 
for a small α-factor was already discussed in the 
previous section. (Figure 7a is identical to Figure 4) 
With increasing α, the phase-locking range shrinks, 
because the upper supercritical Hopf bifurcation line 
bends towards zero. Thus, pulsating behavior of the 
photon is found for Ԑ = 0.06 at Θ = 0.35π. This was 
observed experimentally in QW lasers [45]. This 
permits to conclude that QD lasers have indeed a 
smaller phase-amplitude coupling than QW lasers, 
which is supported by more complex modeling 
approaches [46, 47]. For QD models, in which the 
phase-amplitude coupling is simply described by a 
constant α-factor, this may be modeled by using small 
values for α, i.e. α ≤ 2. Such a choice of α avoids that 
the upper supercritical Hopf bifurcation line crosses the 
zero detuning line. 

Further, at α = 7.5 and when Ԑ = 0.48 a new pair of 
external cavity modes is born in a saddle-node 
bifurcation. In Figure 7c show the linewidth 
enhancement factor α clearly display desynchronized 
dynamics. Thus, a new stable fixed point (node) as well 
as a saddle-point are available to the system dynamics. 
As a consequence we observe another drastic change 
of the laser dynamics towards stable cw operation: at 
the bifurcation point Ԑ = 0.16 a global bifurcation takes 
place. Due to the typical scaling, we presume it to be a 
homoclinic bifurcation of a limit cycle. This can be seen 
in the bifurcation diagram in Figure 6c that show only 
one single branch beyond Ԑ = 0.16. In a small range of 
Ԑ values before these global bifurcation we observe 
bistability: trajectories starting close to the saddle-point 
of the first external cavity mode are attracted by a delay 
induced limit cycle, whereas trajectories starting 
elsewhere end up in a stable node. 

CONCLUSION 

In this paper we have controlled that the nonlinear 
properties of a QD laser are influenced not only by the 
linewidth enhancement factor α but also by the phase 
Θ as function of the bias current δo, delayed time τ and 
feedback strength Ԑ. In our QD laser dimensionless 
model we obtain different dynamics that change with 
the bias current δo, delayed time τ and feedback 
strength Ԑ and the considered QD-QW structure. 
Therefore, we can investigate changes of these 
parameters without changing the system parameters. 
Within this model we have identified both analytically 
and numerically the most important parameters that 
determine the sensitivity of the QD laser to optical 

feedback. We propose that the stability of the laser 
towards optical feedback can be significantly increased 
by a small α-factor, a high bias current at periodic 
values of phase Θ = [0, 0.35π, 0.695π,…]. Such a 
choice of the parameters leads to a higher damping of 
the relaxation oscillations. Thus, we can conclude that 
the strongly damped relaxation oscillations of the QD 
laser cause its lower sensitivity to optical feedback. 
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