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Abstract: Dengue fever is a self-limiting communicable viral disease, transmitted through mosquito bites. Its Case 
Fatality Grade (CFG) varies across population due to variations in viral load, immunity of the patient, early diagnosis, and 
availability of high-end treatment facility. This study describes an initial effort to automate the process of Dengue CFG 
predictions. Two established Statistical Machine Learning (SML) algorithms, Multiple Linear Regressions (MLR) and 
Multinomial Logistic Regressions (MnLR), are combined to substitute the existing Deep Learning methods for clinical 
decision making. We consider a vector of eleven sign-symptoms (independent variables), each weighted between [0,1] 
on a 3-point scale - ‘Mild’ (CFG<=0.33), ‘Moderate’ (0.33<CFG< 0.66), and ‘Severe’ (CFG>0.66). Results show that both 
classifiers are effective in early screening with similar accuracy levels (68% for MLR versus 72% for MnLR) although 
precision levels are far superior with MnLR (88%) than MLR (61%). This study is a futuristic step towards Machine 
Learning (ML) aided clinical diagnostic paradigms, as an alternative to computationally intensive Artificial Intelligence. 

Keywords: Statistical machine learning, Dengue epidemic, Multiple linear regressions, Multinomial logistic 
regressions. 

1. INTRODUCTION 

Dengue is a deadly, communicable, but a self-
limiting disease with mortality rate of ca 1% if detected 
early and attended by proper medical care. However, in 
the course of morbidity, even with medical care, 
mortality can reach up to 2-5% and close to 20% when 
left untreated (Smith, et al., 2019). Therefore, early 
detection by rapid antigen test and optimum 
therapeutic care is required in preventing the high 
mortality rate. The root of the medical problem lies in 
the accuracy of clinical diagnostics that amounts to 
identifying the correct grade of sign-symptoms which 
are patient subjective in nature. Moreover, 
interpretation of the Case Fatality Grade (CFG) also 
varies with the clinician in charge. All of these often 
contribute to under or over diagnosis of the illness, be it 
acute or chronic (Ashish, Chattopadhyay, Gao, & Hui, 
2019). The present study is targeting to first automate 
the CFG mechanism based on self-consistent data 
training and thereby improve the quality, i.e. accuracy 
of diagnostics using a combination of Statistical 
Machine Learning (SML) techniques.  

SML classifiers are the popular breed of Machine 
Learning (ML) algorithms and statistics, due to their 
ease of use, although not particularly high on the 
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prediction accuracy level as also in probabilistic 
extrapolation of data. The more advanced data analytic 
trends are now reliant on Deep Learning (DL), which is 
computationally complex but more accurate for larger 
samples for training (Naeem, Jamil, Khan, & Nazir, 
2020). Based on protracted experience as a practicing 
clinician (first author), an underlying premise of this 
work is to accord low weightage to the need for high 
accuracy levels in diagnosis, screening, prognostic 
evaluations. An accuracy threshold of 70% has been 
set in this work that is drawn from the accuracy level 
registered for a specialist consultant, which is 71% 
(Richens, Lee, & Johri, 2020), and employ two SML 
classifiers: Multiple Linear Regressions (MLR) and 
Multinomial Logistic Regressions (MnLR). With such 
‘hard’ classifiers, model-fitting and prediction accuracy 
may be a challenging task and data training with small 
sample size could be an issue (Miguel-Hurtado, Guest, 
Stevenage, Neil, & Black, 2016). A key aspect of this 
study is to adapt to this technical challenge. 

SML classifiers (SCs) have seen key success in 
analyzing Mosquito-borne communicable diseases, 
ranging from prediction to demographic distributions, 
incidence and prevalence rates in various populations 
and geographical locations. Malaria outbreak rate has 
been recently predicted as an impact outcome of 
ambient variables like rainfall, temperature, humidity, 
and rate of Plasmodium falciparum (causing cerebral 
malaria) in Maharashtra, India (Comert, Begashaw, & 
Turhan-Comert, 2020). The study analyzed an 
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ensemble of three ML algorithms: Random forest, 
Gaussian processes and Logistic regressions. The 
study has demonstrated that each algorithm could 
accurately predict the occurrence of cerebral malaria 
without any true or false positive cases at almost 100% 
accuracy. Detection of Plasmodium parasite in the red 
blood cell (RBC) images (obtained by microscopy) 
using Convolutional Neural Network (CNN)-based 
Deep Learning approach again showed that CNN was 
able to classify RBCs with and without Plasmodium 
within it at an accuracy rate of 97% (Narayanan, Ali, & 
Hardie, 2019).  

Recently, weekly cases of Dengue eruption in 
Columbia have been predicted for a period of 12 weeks 
beyond the last data study, using Random Forest (RF) 
and Artificial Neural Network (ANN) (Zhao, et al., 
2020). Both algorithms demonstrated reasonable 

accuracy in prediction with RF outperforming ANN. 
Additional research on Dengue prediction in the Indian 
scenario was attempted (Kapoor, Ahuja, & Kadyan, 
2020), aiming a predictive model to diagnose dengue 
disease at early stages, ensuring timely intervention. 
More generalized approaches based on modeling virus 
propagation (Farafonov & Nerukh, 2019; Tarasova & 
Nerukh, 2018; Tarasova, et al, 2017) studied the 
biochemistry of viral capsid environment but again not 
the propagation itself. 

While Machine and Deep Learning based data 
modeling techniques are the toast of the day, traditional 
approaches to analyze epidemic propagation have 
been through continuum modeling (Murray 2002; 
Murray 2003) and statistical modeling (Chattopadhyay 
& Chattopadhyay 2021) that led to excellent qualitative 
understanding of the evolution of epidemics and their 

Table 1: Overview of the Methodology Consisted of Approaches and Techniques 

Approaches Techniques 

Data Collection and 
Structuring (rulebase 

creation) 

Tracking Dengue cases (N=100) in several hospitals/health centers in Southern part of India for past two years 
(2018 and 2019).  
Clinical validation: All cases are Dengue positive, tested with rapid kit test (NS1 antigen – single stranded 
RNA) and ELISA that detects immunogenic response (determined by the levels of IgM – active cases and IgG 
– chronic cases or past infections) as an immunogenic response to the viral antigen (Nagar, Savargaonkar, & 
Anvikar, 2020). 
Identifying common/typical Independent variables (sing-symptoms) and its corresponding Case Fatality Grade 
(CFG). 
Assigning weights [0, 1] to sign-symptoms (independent variables) in a 3-point scales as ‘Mild’ (values 
<=0.33), ‘Moderate’ (values >0.33 to 0.66), and ‘Severe’ (values >0.66) by a set of five medical doctors with 
average experience of 10 years. 
Assigning class labels to Dengue CFG (dependent variable) as ‘0’, ‘1’ and ‘2’ as ‘Mild’, ‘Moderate’ and 
‘Severe’, respectively by another set of five medical doctors (who had not participated in assigning weights of 
sign-symptoms) to reduce clinical classification bias. 
Data structuring in the form of rulebase: Each sign-symptom and the corresponding CFG are weighted [0, 1] 
by a set of 10 medical doctors having average experience of 10 years in clinical practice to set an IF-THEN 
rulebase. Each case serves as one rule. Therefore, the structure of data is actually a set of 100 rules. It is 
worth mentioning here that weights [0, 1] are assigned by 5 doctors, while the remaining 5 doctors have 
assigned the corresponding class labels for Dengue CFG. 

Statistical Data Mining 

To note the statistical features of the data using Descriptive statistics, significance test to find out the 
significant or most important sign-symptoms that determine high CFG using Principal Component Analysis 
(PCA) (Swathi & Pothuganti, 2020). 
Correlation and Covariance of the variables to note inter-dependency of sign-symptoms (Dacosta-Aguayo, 
Wylie, DeLuca, & Genova, 2020). 
Normal distribution plot to see the shape (skewness) of the data (Sumair, et al., 2020). 
Probability distribution (Q-Q plot) to see how data points are scattered across mean value (Esteves, Caramelo, 
& Ribeiro, 2020). 

Machine Learning (ML) 

Data wrangling – Consists of two steps, data preprocessing and data scaling. 
Model development and model fitting 
Statistical Classifier development - Two classifiers developed for Dengue CFG prediction.  
Multiple Linear Regressions (MLR) (Ahmed, Jalal, & Kim, 2020) 
Multinomial Logistic Regressions (MnLR) (Ahmed, Jalal, & Kim, 2020) 
Each classifier has been trained using 75% training case data, and validated on the remaining 25% test cases 
using stratified k-fold Crossvalidation (k-fC) (Valavi, Elith, Lahoz-Monfot, & Guillera-Arroita, 2020):  
Classifier’s performance testing by calculating accuracy and precision (Sanders, Servaas, & Slagt, 2020)  
Testing classification accuracy – both label-wise and overall (see equation 1). 
Testing precision of classification – overall (see equation 2). 
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probabilistic decay patterns. Of late, these two 
approaches have been merged such that the patterns 
derived from the continuum models are also 
quantitatively accurate, ensured through probabilistic 
parameterization using statistical modeling techniques 
(Grela et al 2019) and Bayesian Monte Carlo methods 
(Chattopadhyay et al 2021). The present article, 
though, is exclusively a study in data modeling.  

There are two focal points in this study. Our first 
target is to develop simple statistical classifiers with a 
small sample to predict Dengue CFG at an acceptable 
accuracy level that is comparable to that of a specialist 
clinician, as a groundbreaking extension of 
telemedicine. Given a set of independent parameters 
(here, it is sign-symptoms), the classifiers would be 
able to predict CFG within the aforementioned 
tolerance limit of that we set at 70% – a threshold value 
adapted from human clinician accuracy that is 
averaged at 71.4% (Richens, Lee, & Johri, 2020). 
Second, given the fact that about 4 billion population 
worldwide are eventually at risk of being infected with 
Dengue virus, early detection could be the key to 
survival (Nagar, Savargaonkar, & Anvikar, 2020). A 
clear knowledge of the infection level, that is ‘mild’, 
‘moderate’ or ‘high’, could lead to timely therapeutic 
interventions. Our study is, thus, closely associated 
with healthcare provisions and policy formulations. 

2. METHODOLOGY 

An overview of the methodology flowchart 
(Approaches and Techniques) is given in Table 1. 

The schematic in Figure 1 represents a flowchart 
that sequentially traces the methodological outlier 
presented in Table 1 above. The eventual target is to 
automate the human learning protocol by mimicking the 
.functional outliers through a combination of statistical 
processors, starting with data reading and ending with 
risk management. 

2.1. Data Collection  

Collecting clinical data is a difficult task that has 
multiple challenges due to constraints on 
availability/access, authenticity/truthfulness, and 
underlying ethical issues due to sensitivity and privacy 
of the patients. The present study uses data collected 
between 2016 and 2019 in multiple hospitals and 
clinics in India for 100 patients by the first author 
himself in his faculty of a professional clinician, in 
active collaboration with other clinician colleagues. The 
patients were between 20 and 68 years in age 
(average age 42.6 years). The key novelty of the data 
profile is in its originality and longitudinal breadth as the 
data were collected by frontline clinicians who were 
deputed with the responsibility of first analyzing and 
then deciding on the therapeutic regime. 

2.2. Data Curation and Structuring 

A team comprising 10 senior consultant physicians 
have categorized the data according to eleven common 
sign-symptoms (variables): Fever (F), Sore throat (S), 

 

Figure 1: The VIRDOCD Machine Learning Control (MLC) protocol that is trained identically to medical doctors 1 and 2 (novice 
doctors) who learn under the guidance of senior doctors, the human equivalent of the advanced classifiers, who teach them the 
clinical rules and help pre-process (reduce noise) within the information received from the patient. 
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Headache (H), Nausea (N), Vomiting (V), 
Stomachache (S), Myalgia (M), Rashes (R), Diarrhea 
(D), Joint pain (J), Bleeding gums (B). Each sign-
symptom is weighted between [0, 1] and its 
corresponding CFG (O) is labeled on a 3-point system: 
[0, 1, 2], where “0” indicates mild outcome, “1” 
represents moderate outcome and “2” is severe 
outcome. It is worth noting here that to prevent any 
diagnostic/prediction or classification bias; five out of 
the ten expert clinicians involved scored the sign-
symptoms category (weight of 0.1) while the remaining 
five marked the corresponding class labels (mild = 0, 
moderate = 1, high = 2). Weights are essentially 
divided into a 3-point scale as values <=0.33 is ‘Mild’ 
(denoted by Blue-colored cells), >0.33 - <=0.66 as 
‘Moderate’ (denoted by Green-colored cells) and >0.66 
as ‘Severe’ (denoted by Magenta-colored cells). 
Therefore, each case is a weighted sign-symptoms 
vector leading to a labeled CFG as either 0 (as ‘Mild’), 
1 (as ‘Moderate’), or 2 (as ‘Severe’), which is shown in 
Table 2, below. Similar coding is used to determine the 
CFG labels, as also seen in Table 2. It is important to 
note here that prediction values <=0.74, 0.75-1.24, and 
>1.24 are labeled as ‘Mild’, ‘Moderate’, and ‘Severe’ by 
the clinical experts, where class labels are marked as 
float values in MLR-based classification, whereas in 
MnLR these predictions are exactly the class labels of 
‘0’, ‘1’, or ‘2’ and such label demarcations are not 
required.  

The predictor classifiers are essentially trained with 
75% of the rule-base while the remaining 25% of the 
rule-base have been used for testing individual 
classifier’s performance using k-fold Cross-validation 
(k-fC). After careful observation, each case represents 
a rule-base with the portfolio of 100 cases representing 
a rule-base grid comprising ‘100 IF-THEN’ rules, e.g. if 
‘F’ has a weighted value of 0.4235 & ‘ST’ has value of 
0.9951 & ‘H’ is 0.7885 & …& ‘B’ has value of 0.2473 
THEN ‘O’ is ‘2’. In qualitative term, IF ‘F’ is ‘Moderate’ 
& simultaneously both ‘ST’ is ‘Severe’, ‘H’ is ‘Severe’ & 
…& ‘B’ is ‘Mild’, THEN ‘O’ is graded as ‘Severe’.  

2.3. Statistical Data Mining and Machine Learning 
(ML) 

To identify the ‘significant’ sign-symptoms and the 
degree of their interdependence, Principal Component 
Analysis (PCA) has been performed. It is worth noting 
that we have not used PCA for feature (dimension) 
reduction purpose, as the number of features/sign-
symptoms is only 11 and thus well-manageable. 
Eigenvectors and Eigenvalues of a 
covariance/correlation matrix is the core of any PCA, 
as they determine the ‘significant’ or ‘principal’ 
directions of a given feature space and its magnitude, 
respectively. 

It is important to note that the classifiers used (MRL 
and MnLR) are trained with 75% of the rule-base 
obtained from the aforementioned group of 
experienced doctors and tested on 25% of the cases 
using stratified K-fold-Cross-validation (KfC). Accuracy 
(%) in prediction is calculated as Eqn (1):  

          (1) 

where ‘cp’ denotes the number of correct predictions 
and ‘tp’ is the number of total cases, expressed in %.  

Precision (%) in prediction is calculated as in Eqn 
(2) after matching the classifier’s prediction against 
human (10-panel expert) prediction, True positive (TP) 
cases are for the ‘matches’, while ‘mismatches’ lead to 
False Positive (FP) cases:  

          (2) 

(a) Multiple Linear Regressions (MLR): It is a 
popular statistical classifier used to map 
relationships between two or more independent 
variables (eleven Dengue sign-symptoms) and 
the dependent variable (Dengue Case Fatality 
Grade, CFG). It also predicts the value or class 
label (i.e., the severity grade of either ‘0’ or ‘Mild’, 
‘1’ or ‘Moderate’ or ‘2’ or ‘Severe’) of the 
dependent variable at a certain value i.e., the 

Table 2: Glimpse of each Case having CFG Labels with a given Set of Weighted Sign-Symptoms 
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weight assigned by the doctors as <=0.33 or 
‘Mild’, between 0.33 - 0.66 ‘Moderate’ or >0.66 
‘Severe’. MLR relies on basic assumptions like 
homoscedasticity (or homogeneity of variance), 
independence of observations (low correlation 
between any two observations), to define linear 
regression between variables as follows: 

        (3) 

where the following notation is adopted: ‘y’ = predicted 
CFG; ‘B0’ = the y-intercept (i.e., value of ‘y’ while all the 
independent variables/sign-symptoms are set to be ‘0’); 
‘B1x1’ = the regression coefficient ‘B1’ of first sign-
symptom ‘x1’ (which is ‘Fever’ or ‘F’) on the predicted 
‘y’ value; ‘n’ = number of sign-symptoms, i.e., 11; and 
‘ε’ = model error or the deviation of the 
estimated/predicted value from that of the target value.  

(b) Multinomial Logistic Regressions (MnLR): 
This technique, which is also commonly called 
Softmax regression, generalizes logistic 
regression to multiclass problems with more than 
two (i.e. multiple) outcomes (here the Dengue 
CFG grades/categories of 0, 1, or 2). Given a set 
of independent variables (here, the sign-
symptoms each having three categories – ‘Mild’, 
‘Moderate’, and ‘Severe’, having weights of 
<=0.33, between 0.33 - 0.66, and >0.66, 
respectively), which may have real-value, binary 
value or categorical value and it is able to predict 
different possible outcomes of a categorically 
distributed dependent variable (i.e., the Dengue 
CFG grades/categories/class labels of 0, 1, or 2) 
using the Logit function that assumes log 
distribution. The MnLR model for Probability 
P(y=j|, for j=1, 2, …k takes the following form:  

           (4) 

where ‘w’ represents the model parameters, and ‘w0’ is 
the bias value: 

w=[w0,w1,…,wm]T         (4a) 

The ‘m’ independent variables or attributes or sign-
symptoms are written as a vector  

ã = [1,a1,…,am]T         (4b) 

The denominator  normalizes the 
probabilities over all classes j. MnLR classifier 
development comprises the following steps:  

Step 1: Data Preprocessing: Data checked for ‘null’ 
values. If a null value is recorded, it is substituted by 
the median value of that column. 

Step 2: Standardization of the Data: Standard 
scaling on the Data ensuring that standard deviation of 
each feature column is set at 1.  

Steps 1 and 2 together complete Data Wrangling. 
The multinomial regression function consists of two 
functional layers- Linear prediction function that is 
commonly known as the ‘logit layer’ and Softmax 
function, which is also known as ‘softmax layer’.  

Step-3: Development of logit layer: Logit scores 
calculated for each possible outcome. Random weights 
(each of 11 sign-symptoms) and biases (each for 3 
class labels of the predictor) are then assigned in the 
model. 

Step-4: Development of the softmax layer: This 
layer comes into play when logit scores of each 
possible outcome are converted into probability values, 
that is values between 0 and 1.  

Step-5: Measuring accuracy: Eqn (1) quantifies the 
accuracy of the model. 

3. RESULTS AND DISCUSSIONS 

In this section, we interpret the statistical modeling 
results through a clinical lens. Table 3 below shows a 
representative set of statistical outliers. 

3.1. Clinical Correlation of the Values  

Count: 99 denotes 0-99, i.e. 100 rule bases/cases 

Mean and Median: indicates the average weights of 
each sign-symptom and the probable class label for 
any given rule/case. From Table 3, it is observed that 
on average weight of each of the sign-symptoms and 
the class label fall under the grade ‘Moderate’, which 
means the tendency of the given weights is around 
‘Moderate’ grade of sign-symptoms leading to 
‘Moderate’ CFG. 

Standard deviation (Std) is the data dispersion, 
which is fairly similar for all sign-symptoms, varying 
closely between 0.27-0.29. Hence, there’s no outlier as 
such in the data.  

Quartile deviation (25%, 50% and 75%) is a 
measure of central tendency measuring data 
dispersion (the range) within which 50% of samples lie. 
Values of sign-symptoms are also quite close to each 
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other; as shown in the table, 50% weights of the sign-
symptoms lie between 0.33 and 0.66 of the 3-point 
scale, which is labeled as ‘Moderate’.  

Skewness: values under -1 or over +1 denote over-
skewed data. From Table 3, none of the values point to 
such over-skewness, confirming a normal univariate 
distribution. Table 3 indicates that Sore throat (ST), 
Rash (R), Diarrhea (D) and Joint Pain (J) are positively 
skewed while the rest are skewed negatively. It is 
important to note that although ‘F’ (negative) and ‘R’ 
(positive) are oppositely skewed, respectively, their 
values are close to zero. Thus, on a first approximation, 
we set zero skewness for these variables. 

Kurtosis: values falling under -2 or over +2 satisfy 
normal univariate distribution, which is noted for this 
dataset. From Skewness and Kurtosis numbers in 
Table 3, it can be stated that the data are symmetrical.  

Z-score: it is a statistical measure of a score’s 
departure from the mean value. Z=0 means it lies on 

the mean. As in Table 3, apart from Headache (H) and 
Nausea (N), Z-score values of all other sign-symptoms 
are ‘0’ that means these fall on the mean. Z-score of 
1.306 for H means it is 1 standard deviation above the 
mean. While Z-score of -0.011 for the sign-symptom ‘N’ 
indicates that it is 0.011 standard deviation below the 
mean. Summarily it can be ascertained that ca 90% of 
the data fall on the mean and hence symmetrical in 
nature.  

p-value: in Table 3, none of the values fall under 
0.05 and thus it can be stated that there is no 
significant difference of means of each sign-symptom, 
thus endorsing null hypothesis.  

The available data are visualized in two steps. First, 
the frequency of 11 sign-symptoms (independent 
variables) occurrence is extracted as histograms 
(Figure 2). Second, the overall probability distribution 
function is analyzed, which interestingly follows a 
normal distribution (Figure 3).  

Table 3: Descriptive Statistics 

  F ST H N V S M R D J B O 

Count 99 

Mean 0.464 0.483 0.546 0.499 0.517 0.531 0.569 0.481 0.484 0.476 0.519 0.960 

Std 0.297 0.276 0.283 0.283 0.311 0.318 0.284 0.285 0.291 0.291 0.288 0.794 

Min 0.001 0.006 0.019 0.001 0.011 0.007 0.003 0.002 0.011 0.011 0.014 0.000 

25% 0.194 0.257 0.356 0.263 0.250 0.262 0.338 0.292 0.254 0.222 0.256 0.000 

50% 0.471 0.487 0.570 0.542 0.518 0.560 0.545 0.481 0.446 0.450 0.539 1.000 

75% 0.719 0.735 0.806 0.742 0.805 0.811 0.816 0.732 0.726 0.748 0.760 2.000 

Max 0.965 0.995 0.982 1.000 0.998 0.998 0.991 0.980 1.000 0.991 0.983 2.000 

Median 0.471 0.487 0.570 0.542 0.518 0.560 0.545 0.481 0.446 0.450 0.539 1.000 

Skewness -0.009 0.048 -0.232 -0.088 -0.077 -0.125 -0.190 0.001 0.228 0.211 -0.095 0.073 

Kurtosis -1.324 -1.152 -1.067 -1.162 -1.393 -1.356 -1.226 -1.120 -1.083 -1.380 -1.195 -1.406 

z-
scores(avg.) 0.000 0.000 1.306 -0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

p-
values(avg.) 0.501 0.498 0.508 0.503 0.503 0.505 0.506 0.500 0.491 0.491 0.504 0.497 

 

 

Figure 2: Histogram plots of each sign-symptom (weight vs frequency). 
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Table 4 shows covariance matrix between two sign-
symptoms at a time. Positive covariance means when 
value of one sign-symptom increases, the value of the 
other sign-symptom also increases. Negative 
covariance is the interpretation when decrement of one 
sign-symptom’s value decreases the value of the other 
sign-symptom. For e.g., we can see Nausea (N) and 
Headache (H) has negative covariance, while Joint 
pain (J) and Myalgia (M) has positive covariance. It is 
interesting to note that except for Nausea (N), Vomiting 
(V), and Myalgia (M), all other sign-symptoms have 
positive covariance with the CFG/Outcome (O) and so 
are clinically significant for interpretation of the CFG. 

Table 5 shows the correlation matrix of the sign-
symptoms and the CFG. It is interpreted as follows:  

• Correlation value of ‘-1’ or very close to ‘-1’ 
indicates a perfectly negative linear correlation 
between two variables (refer to magenta colored 
cells in the Table). For e.g., in Table 5, it is 

observed that Fever (F) has negative linear 
correlation with Sore throat (ST), Nausea (N), 
Vomiting (V), Stomachache (S), Rash (R), and 
Bleeding (B); Sore throat (ST) is negatively 
correlated with Headache (H), Nausea (N), and 
Joint pain (J); Headache (H) is negatively 
correlated with Nausea (N), Vomiting (V), Rash 
(R), and Diarrhea (D); Nausea (N) is negatively 
correlated with Stomachache (S), Diarrhea (D) 
and Joint pain (J); Vomiting (V) has negative 
correlation with Rash (R) and Bleeding (B); 
Stomachache (S) has negative correlation with 
Myalgia (M), Joint pain (J), and CFG/Outcome 
(O); Myalgia (M) has negative correlation with 
Rash (R); Rash (R) is negatively correlated with 
Diarrhea (D), Joint pain (J) and 
CFG/Outcome(O); Diarrhea (D) and Joint pain 
(J) has negative correlation with Bleeding (B); 
while Bleeding (B) has negative correlation with 
CFG/Outcome(O). 

Table 4: Covariance statistics 

 
 

Table 5: Correlation statistics 
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• Correlation value of ‘0’ or very close to ‘0’ 
indicates no linear correlation between two 
variables (refer to blue colored cells in the 
Table). For e.g., in Table 5, it is observed that 
Sore throat (ST) has no linear correlation with 
[Vomiting (V), Myalgia (M), and Diarrhea (D)]; 
Stomachache (S) with Rash (R); Myalgia (M) 
with Bleeding (B) and CFG/Outcome (O); and 
Diarrhea (D) with CFG/Outcome(O). 

• Correlation value of ‘1’ or very close to ‘1’ 
indicates a perfectly positive linear correlation 
between two variables (refer to green colored 
cells in the Table). For e.g., Fever (F) has 
perfectly positive linear correlation with 
Headache (H), Myalgia (M), Diarrhea (D), Joint 
pain (J), and CFG/Outcome (O). Similarly, Sore 
throat (ST) has positive correlation with 
Stomachache (S), Rash (R), and Bleeding (B); 
Headache (H) with Stomachache (S), Myalgia 
(M), Joint pain (J), Bleeding (B), and 
CFG/Outcome (O); Nausea (N) has positive 
correlation with Myalgia (M), Rash (R), Bleeding 
(B), and CFG/Outcome (O); Vomiting (V) is 
positively correlated with Myalgia (M), Diarrhea 
(D), Joint pain (J), and CFG/Outcome (O); 
Stomachache (S) is positively correlated with 
Diarrhea (D) and Bleeding (B); Myalgia (M) has 
positive correlation with Diarrhea (D) and Joint 
pain (J); Rash (R) is positively and linearly 
correlated with Bleeding (B); and finally Joint 
pain (J) is positively correlated to 
CFG/Outcome(O).  

• This dataset is clearly non-normal in distribution 
(Figure 3 in Appendix) with an extended left tail 
(negative skewness) and slender right tail 
(positive skewness). The tip is notched and not 
purely bell shaped as the mean and median do 
not fall on each other at all time. 

 
Figure 3: Normal distribution curve of Dengue dataset. 

• The Probability distribution plot (Figure 4) is 
actually a Quartile-Quartile or Q-Q plot. Its x-axis 
and y-axis are ‘Theoretical Quantiles’ and 
‘Ordered Values’ or ‘Sample Quantile’, 
respectively, offering a visualization of how data 
are distributed around the mean value (depicted 
by the straight line in Figure 3). 

 

Figure 4: Probability distribution plot. 

• Shapiro-Wilk Normality Test has been conducted 
to examine whether the variables have Gaussian 
distribution or not based on the p-value. It is 
seen for this data that p-value is 0.0035, which is 
<0.05, hence these are not Gaussian. R2 value 
denotes goodness of model fit, which is 91%. 

• Pearson's Correlation test: to test whether the 
factors are independent or not based on the p-
value, which is 0.435, i.e., >0.05, indicating that 
the factors are probably independent of each 
other. 

3.2. Results of Principal Component Analysis (PCA) 

This statistical technique is commonly used for 
exploratory data analysis and making predictive 
models. Another key usage is in dimensional reduction 
by projecting each data point onto the first few principal 
components, expressed as Eigenvalues (magnitude) 
and Eigenvectors (direction). Eigenvalues thus 
calculated are F = 19.17, ST = 36.99, H = 52.18, N = 
63.71, V = 73.53, S = 80.73, M = 86.88, R = 92.06, D = 
95.68, J = 98.13, and B = 99.43. Figure 5 shows the 
PCA plot of ‘%Variance Explained’ (y-axis) vs. ‘# of 
Features’ (x-axis). High Eigenvalues are found for sign-
symptoms ‘Stomachache (S)’, ‘Myalgia (M)’, ‘Rash (R)’, 
‘Diarrhea (D)’, ‘Joint pain (J)’, and ‘Bleeding (B)’, when 
>80% (marked by red vertical line) is considered to be 
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a high cut-off mark, selected arbitrarily (refer to  
Figure 5).  

 

Figure 5: Principal Component Analysis (PCA) plot. 

PCA has been carried out as the part of machine 
learning analysis to understand how percentage 
variances are placed on the corresponding features 
and not for feature extraction or elimination (i.e., the 
dimensionality reduction) as the number of features 
(sign-symptoms) are only 11 and manageable. PCA 
suggests that variables/features/sign-symptoms are 
independent of each other. 

3.3. Results of Multiple Linear Regressions (MLR) 

Regression coefficients (B-values as per equation 
2) can be seen in Table 6, below.  

Table 6: Regression coefficients 

B0 0 

B1 0.088203 

B2 -0.32084 

B3 0.248072 

B4 0.742001 

B5 -0.08632 

B6 -0.1613 

B7 -0.11357 

B8 -0.18688 

B9 0.000856 

B10 0.279788 

B11 -0.60162 

 
For prediction (y) coefficient values are multiplied 

with the corresponding independent variables and the 
products are summed up as shown in equation (2). B0 
is the intercept/slope and here its value is ‘0’. 
Prediction accuracy is calculated using equation (1).  

Table 7 shows the actual/target vs. predicted class 
label for 25 test cases. Class labels have been created 
as per the opinion of five of the ten experienced 
doctors and is shown in the last row of the table. 
Matched class labels are marked as green for easy 
visualization, while grey cells indicate all True positive 
cases and red cells are indicative of False positive 
cases. 

Table 7: Actual vs. Predicted results of 25 test cases by 
MLR Classifier 

 

From Eqn (1), the overall accuracy thus calculated 
is:  

17/25 *100 = 68%, closely matching with human 
doctor’s average diagnostic accuracy of 71.4% 
(Richens, Lee, & Johri, 2020). Label-wise accuracy can 
be seen in Table 8. 

Using equation (2), precision of classification has 
been calculated as follows:  

TP = [0, 3, 5, 7-11, 20, 23, 24], i.e., total number of 
cases = 11 
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FP = [1, 2, 16-19], i.e., total = 6 

Therefore, precision  
It is important to note MLR is unable to predict 

exactly as the class labels, instead it gives some float 
values seen in Table 7. Those predicted values are 
interpreted by 5 out of 10 expert clinicians who avoided 
weight scoring for the sign-symptoms (to prevent 
classification bias): 0.0 - 0.74 is ‘Mild’ grade, 
represented by class label ‘0’; 0.75 - 1.24 is ‘Moderate’, 
represented by class level ‘1’; >1.24 is ‘Severe’, 
represented by class label ‘2’.  

3.4. Results of Multinomial Logistic Regressions 
(MnLR) 

As mentioned, MnLR has got two functions; detailed 
flowcharts below:  

1) Logit function  

Step-1: Creating random weights and biases for the 
model, initialized at ‘0’ 

Step-2: Calculating logit scores (glimpse of first 5 
cases can be seen below) with shape (99, 3, i.e., 3 
weights for each of 99 total cases) 

Weights Case 1: [[2.80895057 3.31177159 
2.8193969 ] 

Weights Case 2: [2.00201906 2.02635133 
1.8194785 ] 

Weights Case 3: [1.99955182 2.64174856 
2.72071056] 

Weights Case 4: [2.41963375 3.33930231 
3.12822817] 

Table 8: Class label accuracy measure of MLR classifier 

 

Table 9: Run Vs. Accuracy (MnLR Classifier) 
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Weights Case 5: [2.19083221 2.87746546 2.87449524]] 
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2) Softmax function:  

Step-1: Converting logit scores to probability values 

Step-2: Performing Multinomial Logistic Regression 
on a set with ‘features’, ‘weights’, and ‘biases’ that 
returns the probability values of the prediction. It is 
worth noting that the prediction values vary from one 
run to another run due to inherent stochasticity of the 
data. Below are few examples of varied accuracy at a 
given number of run in Table 9. From the table it can 
be seen that highest accuracy of 76% can be viewed in 
Run 4. Based on this observation it can be assumed 
that accuracy can further be increased with more Runs 
(ensemble averaging). 

Table 9 shows the actual/target vs. predicted class 
label for 25 test cases, used in MLR classification 
testing. Class labels have been created as per the 
opinion of five of the ten experienced doctors and is 
shown in the last row of the table. Matched class labels 
are marked as green for easy visualization, while grey 
cells indicate all True positive cases and red cells are 
indicative of False positive cases. 

Compared to first three Runs, the fourth Run shows 
much higher accuracy. Therefore, there is a chance 
that MnLR may render better accuracy in predicting the 
Dengue CFG on further runs and can outperform the 
MLR classifier, although their overall accuracies are 
equal in this experiment. Higher dataspace might be 
able to fit both the models better. Here instances are 
only 100. It would be interesting to analyze how these 
classifiers behave in higher dataspace (on synthetic 
data). Also, the MnLR classifier algorithm can be 
further optimized with minimum information loss. 

Using equation (2), precision of classification by 
MnLR has been calculated as follows:  

TP = [0-4, 7-9, 13-15, 17, 20, 22-24], i.e., total 
number of cases = 16 

FP = [5, 10], i.e., total = 2.  

Here, it is important to note that MnLR is able to 
predict exactly as the class labels unlike MLR, which 
predicts CFG as a float value and its interpretation had 
to be made by the expert panel to match with the class 
label, according a precision value of  

Comparison of Classifiers’ performance: 
Performance of MLR and MnLR has been compared in 
terms of accuracy and precision, using equation 1 and 
2, respectively. Tables 7 to 10 show that the MnLR 
classifier can predict Mild, Moderate, and Severe 
Classes/Labels at 70%, 37% and 85% accuracy marks, 
respectively with overall accuracy of 72%. It is worth 
noting that there is a possibility that the accuracy can 
be further increased with more Runs, as evident from 
the experiment. On the other hand, MLR classifier is 
able to predict the labels ‘Mild’, ‘Moderate’, and 
‘Severe’ with 50%, 62%, and 14% accuracies, 
respectively with overall accuracy of 68% that is also 
close to MnLR in clinical setting. MnLR is found to be 
more precise (88%) compared to MLR (61%). 

Prediction of ‘Mild’ cases with close to 50-70% 
accuracy by both the classifiers are clinically 
acceptable. Both classifiers can reliably screen ca 50-
70% of the ‘Mild’ cases, which is desired in a clinical 
set up (human eyes often over or underestimate the 
future risk) due to its subjective course of morbidity. A 
key derivative of this study is the ability to predict the 
longitudinal progression of a case study from 
‘moderate’ to ‘severe’, or even ‘mild’ to ‘moderate’ to 
nip the health prognosis at its bud.  

4. CONCLUSIONS  

The first key achievement of this study is the 
establishment of Statistical Machine Learning (SML) as 
a reliable diagnostic tool in the early prediction of 
Dengue CFG, a tool that can subjectively extract 
information both from epidemiological and sign-
symptoms data to quantify the health state of a patient. 
SML classifiers, such as MLR and MnLR, though 
computationally ‘hard’, yet these are able to predict 
Dengue CFG at an acceptable level of precision and 

Table 10: Class label accuracy measure of MnLR classifier (on the best Run i.e., Run 4) 
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accuracy that is comparable to diagnostics from human 
clinicians. More importantly, using Statistical classifiers, 
‘Mild’ cases could be screened with 50-70% accuracy, 
which are often overlooked by human clinicians, 
leading to either an under-diagnosis or over-diagnosis. 
Under-diagnosis has the innate peril of ascribing low or 
insignificant weightage to therapeutic assessments that 
often lead to silent progression of the disease, with 
progressive and fast evolution to ‘Moderate’ and then 
to a ‘Severe’ diseased state. Incidences of death due to 
lack of detection at a sufficiently early stage is actually 
quite common. This whole chain of silent but fast 
deterioration can be checked at the very initial stage 
using SML. Deep learning and other computationally 
complex ML methods may offer higher predictive 
accuracy, but these are computationally demanding, 
that may preclude their implementation in public 
healthcare domain, both due to lack of appropriate 
training and disbelief of clinicians on such agents of 
automation. Over-diagnosis a complementary peril, one 
of whose critical manifestation is in the form of 
antibiotic apocalypse that amounts to inefficacy of 
antibiotic treatment due to over usage and subsequent 
immunity of the bacteria against such medications. As 
shown in this study, SML can be an excellent 
complementary consort in such diagnostic assessment.  

In real-world clinical practice, 70% accuracy is a go 
by number, because at the end of the day, it is the 
clinician who takes the final call. This entire decision-
making process can hugely benefit through adaptation 
of unbiased ML-based toolkits, be it in the form of 
simple SML classifiers or complex Deep Learning 
based predictors, helping to identify the correct health 
state and therapeutic regimen of the infected. This is 
particularly relevant for a rapidly deteriorating infectious 
disease like dengue for which the accuracy of illness 
grade prediction is one of the worst. Reasons for such 
inaccuracy have been attributed to a combination of 
personal judgment as also the real time involvement of 
a clinician with a patient, particularly in heavily 
populated countries like India.  

The present study combines clinical judgment with 
unbiased data profiled diagnostic, thus establishing a 
mathematical rationale behind the clinical practice 
number (71%). Another contribution of this work is in 
establishing a full proof mechanism of cross-validation 
of the clinical deduction, first through human clinicians 
concurring on SML predicted infection grades, and then 
validating the collective opinion of the medical board 
(involving 10 clinicians for the present data set) through 
SML classifiers.  

The study thus effectively identifies a ‘virtual doctor’ 
that aids smart human decision making by 
complementing human diagnosis with a process of 
‘adaptive learning’ instead of complex ‘deep learning’ 
as natural human cognition mechanism. This is a finely 
debated topic as questions have been asked about the 
nature of human decision making, whether that is a 
stochastic process moderated by Bayesian inference, 
leading to ‘on the spar’ decisions (Khalavati 2019), or a 
robust didactic regimen that builds on supervised 
learning as is used in ‘Deep Learning’ methods to 
understand vulnerabilities in the decision-making 
process (Dezfouli 2020). This is also a finer, faster and 
robust form of human intelligence that has been 
modeled here for clinical decision making.  

5. FUTURE WORK 

The outcomes of this study are undeniably 
constrained by their own limitations. These have 
worked on CFG levels with sharp boundaries defined 
on a 3-point scale. However, in reality, the boundaries 
defining the severity grades of a patient may not be so 
precise but highly fuzzy in nature, especially in the 
transition state as the inherent feature of the course of 
morbidity. Also, subjective analysis by an expert may 
inject ‘twilight zone’ fluctuations in a prognosis. For 
example, a case noted as ‘mild’ by an expert could as 
well be deemed at ‘moderate’ risk by another or even 
‘severe’ by someone else. A key future target will be to 
extend the scope of the present SML classifier-based 
prediction algorithm to accommodate stochastic 
fluctuations in a clinical decision-making process, 
combining Bayesian inferencing with clinical second-
best diagnostics. 

Another dimension that we are presently working on 
is to add an independent Deep Learning (DL) kernel to 
the automated prognosis outlined in this work. In 
particular, the target will be to predict how many of the 
initial false negatives could later turn fatal and vice 
versa. This is a virgin area of study where we expect to 
further complete DL modes of learning with stochastic 
machine learning. 
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