Plant Mediated Green Synthesis of Metal Nanoparticles for Applications in Medicine
DOI:
https://doi.org/10.12974/2311-8792.2016.04.3Keywords:
Antibacterial efficacy, biosynthesis, nanometals, plant extracts.Abstract
The infectious diseases are one of the leading causes of death of children, adolescents and olds worldwide. Antimicrobial agents are commonly used to kill or inhibit the growth of these microorganisms. To date, herbal medicines are in great demand because of their efficacy, safety and fewer adverse effects as compared with prevailing antibiotics. However, a big challenge is to deliver the herbal formulations in a sustained manner to the infected region at the lowest effective level. Besides the development of alarming resistance of microbes towards antimicrobial agents is a major global public health problem. Nanomaterials seems to be effective alternative antimicrobials to combat such resistant bugs. Various physio-chemical methods have been employed for nanometal synthesis. Biosynthesis of nanometals using different parts of plants is now an emerging field of research in order to overcome the high cost and to minimize the use of hazardous chemicals in the traditional methods of synthesis. The nanometals synthesized using different parts of plants have been proven to be effective antibacterial agents. This review will describe the recent advancement in the green synthesis of nanometals using different parts of various plants and their antibacterial efficacy.
References
Freire-Moran L, Aronsson B, Manz C, Gyssens IC, So AD, Monnet DL, et al. Critical shortage of new antibiotics in development against multidrug-resistant bacteria—Time to react is now. Drug Resistance Updates 2011; 14(2): 118-124. http://dx.doi.org/10.1016/j.drup.2011.02.003
Yadav D, Suri S, Choudhary A, Sikender M, Hemant BN. Novel approach: Herbal remedies and natural products in pharmaceutical science as nano drug delivery systems. Int J Pharm Tech 2011; 3(3): 3092-3116.
Bairwa NK, Sethiya NK and Mishra SH. Protective effect of stem bark of Ceiba pentandra Linn. Against paracetamolinduced hepatotoxicity in rats. Pharmacognosy Research 2010; 2(1): 26-30. http://dx.doi.org/10.4103/0974-8490.60584
Nadagouda MN, Hoag G, Collins J and Varma RS. Green synthesis of Au nanostructures at room temperature using biodegradable plant surfactants. Crystal Growth and Design 2009; 9(11): 4979-4983. http://dx.doi.org/10.1021/cg9007685
Luangpipat T, Beattie IR, Chisti Y and Haverkamp RG. Gold nanoparticles produced in a microalga. Journal of Nanoparticle Research 2011; 13(12): 6439-6445. http://dx.doi.org/10.1007/s11051-011-0397-9
Rajesh S, Raja DP, Rathi JM and Sahayaraj K. Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. malvacearum. Journal of Biopesticides 2012; 5: 119-128.
Ankamwar B, Damle C, Ahmad A and Sastry M. Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. Journal of Nanoscience and Nanotechnology 2005; 5(10): 1665-1671.
Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP and Misra A. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009; 339(1): 134-139. http://dx.doi.org/10.1016/j.colsurfa.2009.02.008
Sathishkumar M, Sneha K, Kwak IS, Mao J, Tripathy SJ and Yun YS. Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract. Journal of Hazardous Materials 2009; 171(1): 400-404. doi:10.1016/j.jhazmat.2009.06.014
Dhuper, Sandeep, Darshan Panda and Nayak PL. Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Mangifera indica. Nano Trends: J Nanotech App 2012; 13(2): 16-22.
Sepeur S. Nanotechnology: technical basics and applications. Vincentz Network GmbH and Co KG; 2008.
Sukhdev SH, Suman PS, Gennaro L and Dev DR. Extraction technologies for medicinal and aromatic plants. United Nation Industrial Development Organization and the International Center for Science and High Technology 2008; 116.
Dwivedi AD and Gopal K. Plant-mediated biosynthesis of silver and gold nanoparticles. Journal of biomedical nanotechnology 2011; 7(1): 163-164. http://dx.doi.org/10.1166/jbn.2011.1250
Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 2007; 18(10): 105104-105115. http://dx.doi.org/10.1088/0957-4484/18/10/105104
Song JY and Kim BS. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering 2009; 32(1): 79-84. http://dx.doi.org/10.1007/s00449-008-0224-6
Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H and Jose-Yacaman M. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 2003; 19(4): 1357-1361. http://dx.doi.org/10.1021/la020835i
Marshall AT, Haverkamp RG, Davies CE, Parsons JG, Gardea-Torresdey JL and Van Agterveld D. Accumulation of gold nanoparticles in Brassica juncea. International Journal of Phytoremediation 2007; 9(3): 197-206. http://dx.doi.org/10.1080/15226510701376026
Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, et al. Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Letters 2002; 2(4): 397-401. http://dx.doi.org/10.1021/nl015673+
Rodríguez E, Peralta-Videa JR, Sánchez-Salcido B, Parsons JG, Romero J and Gardea-Torresdey JL. Improving gold phytoextraction in desert willow (Chilopsis linearis) using thiourea: a spectroscopic investigation. Environmental Chemistry 2007; 4(2): 98-108. http://dx.doi.org/10.1071/EN06048
Sharma NC, Sahi SV, Nath S and Parsons JG, Gardea- Torresde JL and Pal T. Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environmental Science and Technology 2007; 41(14): 5137-5142. http://dx.doi.org/10.1021/es062929a
Manceau A, et al. Formation of metallic copper nanoparticles at the soil−root interface. Environmental Science and Technology 2008; 42(5): 1766-1772. http://dx.doi.org/10.1021/es072017o
Cai Y, Shen Y, Xie A, Li S and Wang X. Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles. Journal of Magnetism and Magnetic Materials 2010; 322(19): 2938-2943. http://dx.doi.org/10.1016/j.jmmm.2010.05.009
Lukaszewicz JP, Wesołowski RP and Cyganiuk A. Enrichment of Salix viminalis wood in metal ions by phytoextraction. Polish Journal of Environmental Studies 2009; 18(3): 507-511.
Cyganiuk A, Klimkiewicz R, Olejniczak A and Lukaszewicz JP. Biotechnological fabrication of LaMnO3-carbon catalyst for n-butanol conversion to ketones. Carbon 2010; 48(1): 99-106. http://dx.doi.org/10.1016/j.carbon.2009.08.034
Kirthika P, Dheeba B and Sivakumar R. Plant Mediated Synthesis and Characterization of Silver Nanoparticles. International Journal of Pharmacy and Pharmaceutical Sciences 2014; 6(8): 304-310.
Zhang Y, Cheng X, Zhang Y, Xue X and Fu Y. Biosynthesis of silver nanoparticles at room temperature using aqueous aloe leaf extract and antibacterial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013; 423: 63-68.
Shankar SS, Rai A, Ahmad A and Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science 2004; 275(2): 496-502. http://dx.doi.org/10.1016/j.jcis.2004.03.003
Narayanan KB and Sakthivel N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Advances in Colloid and Interface Science 2011; 169(2): 59-79. http://dx.doi.org/10.1016/j.cis.2011.08.004
Łukaszewicz JP, Wesołowski RP and Cyganiuk A. Enrichment of Salix viminalis wood in metal ions by phytoextraction. Polish Journal of Environmental Studies. 2009; 18(3): 507-511.
Mariselvam R, Ranjitsingh AJ, Nanthini AU, Kalirajan K, Padmalatha C and Selvakumar PM. Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014; 129: 537-541. http://dx.doi.org/10.1016/j.jcis.2004.03.003
Bianco A and Uccella N. Biophenolic components of olives. Food Research International 2000; 33(6): 475-485. http://dx.doi.org/10.1016/j.saa.2014.03.066
Farag RS, El-Baroty GS and Basuny AM. Safety evaluation of olive phenolic compounds as natural antioxidants. International Journal of Food Sciences and Nutrition 2003; 54(3): 159-174. http://dx.doi.org/10.1016/j.colsurfa.2013.01.059
Khalil MM, Ismail EH, El-Baghdady KZ and Mohamed D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry 2014; 7(6): 1131-1139. http://dx.doi.org/10.1016/S0963-9969(00)00072-7
Selvam K, Sudhakar C, Govarthanan M, Thiyagarajan P, Sengottaiyan A, Senthilkumar B, et al. Ecofriendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb.) Miers and evaluate its antibacterial, antioxidant potential. Journal of Radiation Research and Applied Sciences 2016. http://dx.doi.org/10.1080/0963748031000136306
Rajawat S and Qureshi MS. Comparative study on bactericidal effect of silver nanoparticles, synthesized using green technology, in combination with antibiotics on Salmonella typhi. Journal of Biomaterials and Nanotechnology 2012; 3(4): 480-485. http://dx.doi.org/10.4236/jbnb.2012.34049
Ankamwar B, Chaudhary M and Sastry M. Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry 2005; 35(1): 19-26. http://dx.doi.org/10.1081/SIM-200047527
MubarakAli D, Thajuddin N, Jeganathan K and Gunasekaran M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids and Surfaces B: Biointerfaces 2011; 85(2): 360-5. http://dx.doi.org/10.1016/j.colsurfb.2011.03.009
Muthuvel A, Adavallan K, Balamurugan K and Krishnakumar N. Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties. Biomedicine and Preventive Nutrition 2014; 4(2): 325-332. http://dx.doi.org/10.1016/j.bionut.2014.03.004
Ahmed KB, Subramanian S, Sivasubramanian A, Veerappan G and Veerappan A. Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014; 130: 54-58. http://dx.doi.org/10.1016/j.colsurfb.2011.03.009
Yoon KY, Byeon JH, Park JH and Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment 2007; 373(2): 572-575. http://dx.doi.org/10.1016/j.bionut.2014.03.004
Daniel SK, Vinothini G, Subramanian N, Nehru K and Sivakumar M. Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. Journal of Nanoparticle Research 2013; 15(1): 1-10. http://dx.doi.org/10.1016/j.saa.2014.03.070
Yallappa S, Manjanna J, Sindhe MA, Satyanarayan ND, Pramod SN and Nagaraja K. Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using Terminalia arjuna bark extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2013; 110: 108-115. http://dx.doi.org/10.1016/j.saa.2013.03.005
Pattanayak M and Nayak PL. Ecofriendly green synthesis of iron nanoparticles from various plants and spices extract. International Journal of Plant, Animal and Environmental Sciences 2013; 3(1): 68-78.
Narendhar C, Anbarasu S, Divakar S and Gunaseelan R. Antimicrobial activity of Chitosan Coated Iron Oxide Nanoparticles IJCRGG 2014; 6(3): 2210-2212. http://dx.doi.org/10.1016/j.saa.2013.03.005
Arokiyaraj S, Saravanan M, Prakash NU, Arasu MV, Vijayakumar B and Vincent S. Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: an in vitro study. Materials Research Bulletin 2013; 48(9): 3323-3327. http://dx.doi.org/10.1016/j.materresbull.2013.05.059
Vijayakumar S, Vinoj G, Malaikozhundan B, Shanthi S and Vaseeharan B. Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015; 137: 886-891.
Ramesh M, Anbuvannan M and Viruthagiri G. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015; 136: 864-870. http://dx.doi.org/10.1016/j.saa.2014.09.105
Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005; 16(10): 23462353. http://dx.doi.org/10.1088/0957-4484/16/10/059
Klasen HJ. Historical review of the use of silver in the treatment of burns. I Early Uses Burns 2000; 26(2): 117-130. http://dx.doi:10.1016/S0305-4179(99)00116-3